THE TOXICOKINETICS OF 2-METHYLNAPHTALENE IN RATS

Radosław Świercz, Wojciech Wąsowicz, and Wanda Majcherek

Nofer Institute of Occupational Medicine, Łódź, Poland
Department of Toxicology and Carcinogenesis

Abstract
Background: The aim of the study was to evaluate the toxicokinetics of 2-methylnaphtalene (2-MN) during and after inhalation exposure.

Material and Methods: Male Wistar rats were exposed to 2-MN vapours at nominal concentrations of 200 or 400 mg/m³ in the dynamic inhalation chamber for 6 hours or 5 days (6 h/day). Blood samples were collected during and after exposure. Blood concentrations of 2-MN were estimated by gas chromatography using the headspace technique.

Results: During a 6-hour exposure to 200 or 400 mg/m³, blood 2-MN concentration increased rapidly within the first or second hour of exposure, respectively, after reaching a plateau. The elimination of 2-MN from blood followed an open two-compartment model.

Conclusion: 2-MN was rapidly eliminated from blood of the animals exposed by inhalation to 2-MN. During exposure, lung retention of the chemical was found to decrease. Under conditions of repeated 2-MN exposure, no significant systemic 2-MN accumulation could be observed.

Key words: 2-Methylnaphtalene, Rats, Inhalation exposure, Blood, Toxicokinetics

INTRODUCTION

2-Methylnaphtalene (2-MN) is a petrol component and it can also be found in numerous commercial solvent mixtures [1,2]. 2-MN is one of the many constituents of tobacco smoke [3]. Human systemic 2-MN penetration is attributable primarily to inhalation exposure. Only a few reports assessing 2-MN toxicity in humans or animals under conditions of inhalation exposure are available in literature [4].

Studies on mice have shown that the major toxic effect of 2-MN is on the lungs, and there has been a strong correlation between 2-MN dose and lung damage [5–7]. Animal inhalation study revealed that a single dose of 2-MN produced a strong irritant effect in mice and a neurotoxic effect in rats [8].

The present paper discusses the toxicokinetics of 2-MN in rat blood under conditions of single or repeated exposure to 2-MN.

MATERIALS AND METHODS

Chemicals
2-Methylnaphtalene (2-MN, CAS No.: 91-57-6) was supplied by Fluka. Its chemical purity was 97%.

Animals and inhalation exposure
Male Wistar IMP: WIST rats weighing 290–380 g (3–4 months old) were exposed to 2-MN vapours at the target concentrations of 200 and 400 mg/m³ in the dynamic inhalation chamber (volume 0.25 m³, 15 air changes per hour) for 6 hours or 5 consecutive days (6 hours/day). The animals were given standard laboratory food and water ad libitum, except for the time when they were exposed to 2-MN vapours. The relative temperature in the chamber was maintained at 20–22°C and humidity at 40–50%.

The required 2-MN vapours were generated by heating 2-MN to 85°C in a glass washer. The desired vapour concentrations were obtained through air dilution. Vapour sample (0.5 dm³) was absorbed on 2 cm³ liquid sorbent...
(ethyl alcohol from Polmos, Poland; purity 95%). The concentration of 2-MN vapours in the exposure chamber was measured every 30 min by gas chromatography (Hewlett-Packard 5890) with a flame ionisation detector (FID) using capillary column (HP-1; 5 m, 0.53 mm, 2.65 μm film thickness). The operating conditions were: carrier gas — helium, column flow 10 ml/min; make-up gas (helium) 20 ml/min; air 300 ml/min; oven 150°C; inlet split 220°C, detector 230°C.

Biological material collection and analysis
Venous blood samples drawn from the tail vein were collected before (0 h), during (1, 2, 3, 4, 5, 6 h) and after (0.05, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6 h) exposure to 2-MN vapours into 100 μl heparinized glass capillary. The collected samples were stored at +4°C until the determination. Blood 2-MN concentrations were estimated by gas chromatography combined with the headspace technique, using naphthalene as an internal standard [9]. Gas chromatograph (Hewlett-Packard 5890 Series II) was equipped with FID. The operating temperature of the capillary column (HP-1; 30 m, 0.53 mm, 2.65 μm film thickness) was 150°C. The operating conditions were: carrier gas — helium, constant flow mode, column flow 10 ml/min; make-up gas (helium) 20 ml/min; air 300 ml/min; inlet split 220°C, detector 240°C. The limit of detection for 2-MN was 0.01 mg/l for blood analysis.

Statistical analysis
An open two-compartment model plotted with Sigma-Plot 4.0 for Windows (Jandel Corporation) was used for the kinetic analysis of 2-MN in blood. The differences in 2-MN blood concentrations between the days of exposure were estimated using Student t-test [10]. P < 0.05 was considered significant.

RESULTS
2-MN concentrations in rat blood during a six-hour inhalation exposure to 2-MN vapours at nominal concentrations of 200 or 400 mg/m³ and the elimination kinetics data are presented in Figure 1 and Table 1. During a six-hour exposure to 168 or 404 mg/m³ of 2-MN, blood concentration of the chemical increased rapidly within the 1st or 2nd hour of exposure, respectively, and then reached a plateau. The increase in 2-MN concentration in rat blood was dependent on the magnitude of exposure. The kinetics analysis showed that the half-life and the area under the curve (AUC) of 2-MN in blood increased with a rising level of inhalation exposure.

Blood 2-MN concentrations after a six-hour inhalation exposure to 2-MN vapours at nominal concentrations of 200 or 400 mg/m³ and the elimination kinetics data are displayed in Figure 2 and Table 2. A rapid decrease in blood 2-MN levels was noted within the first hour after a single exposure to low 2-MN levels. In the animals exposed to high 2-MN concentrations, this process was noted during the first two hours of observation. During

Table 1. Toxicokinetics of 2-MN absorption in rat blood during 6-hour inhalation exposure to 2-MN vapours at the target concentrations of 200 and 400 mg/m³

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2-MN concentration in inhaled air (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>168±55</td>
</tr>
<tr>
<td>absorption equation: y = a×(1-e^{k t})</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5.60±1.40</td>
</tr>
<tr>
<td>k</td>
<td>1.20±0.30</td>
</tr>
<tr>
<td>Half-life (h)</td>
<td>0.62±0.20</td>
</tr>
<tr>
<td>AUC (0 → 6 h)</td>
<td>28.90±8.50</td>
</tr>
<tr>
<td>AUC — area under curve.</td>
<td></td>
</tr>
</tbody>
</table>
had higher blood 2-MN levels after the first day of exposure compared to the following days. Statistical analysis showed significantly lower blood 2-MN concentrations on exposure days 2 and 3 compared to day 1. At both exposure levels, 2-MN was not detected in the blood during the consecutive days following exposure to 2-MN.

During the first hour after repeated exposure at different 2-MN concentrations, the chemical was rapidly eliminated from blood (Figure 4). The elimination rate was calculated using an open two-compartment model. The kinetics equations are presented in Table 3. The half-lives

Table 2. Toxicokinetics of 2-MN elimination from rat blood after 6-hour inhalation exposure to 2-MN vapours at target concentrations of 200 and 400 mg/m³

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2-MN concentration in inhaled air (mg/m³)</th>
<th>elimination equation: $y = ax^b + c$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>168±55</td>
<td>413±43</td>
</tr>
<tr>
<td>a</td>
<td>3.15±0.44</td>
<td>28.80±2.50</td>
</tr>
<tr>
<td>k</td>
<td>1.37±0.20</td>
<td>0.65±0.19</td>
</tr>
<tr>
<td>b</td>
<td>1.73±0.37</td>
<td>10.60±2.40</td>
</tr>
<tr>
<td>l</td>
<td>0.15±0.04</td>
<td>0.05±0.003</td>
</tr>
<tr>
<td>Half-life, phase I (h)</td>
<td>0.52±0.08</td>
<td>1.13±0.31</td>
</tr>
<tr>
<td>Half-life, phase II (h)</td>
<td>4.96±1.05</td>
<td>13.97±0.97</td>
</tr>
<tr>
<td>AUC (0 → 6 h)</td>
<td>9.84±2.09</td>
<td>99.70±11.30</td>
</tr>
</tbody>
</table>

AUC — area under curve.
concentrations affected the calculated AUC values. After repeated exposure to 2-MN, the AUC was almost three times as high as that after a single exposure. Two major factors may have accounted for the increase in the AUC value and blood 2-MN concentration in the repeatedly exposed rats. The first one was the difference in the magnitude of exposure to 2-MN during a single and repeated exposure. The mean concentration of 2-MN under conditions of repeated exposure was ca. 15% higher than that during a single exposure. The other factor was the high affinity of 2-MN to the kidney, liver and adipose tissue [6]. The particularly high 2-MN affinity to the liver and kidney, belonging to the rapidly equilibrating compartments, could affect 2-MN distribution and elimination in the rats repeatedly exposed to 2-MN, which has resulted in higher blood 2-MN levels and greater AUC value.

The animals repeatedly exposed to high 2-MN concentrations showed decreased blood 2-MN levels on the consecutive days after the daily 6-hour period of exposure (Figure 3). This has resulted in shorter half-lives of elimination (phase I and II) and a lower AUC value compared with a single-dose exposure (Tables 2 and 3). The underlying factors include lower lung retention of 2-MN in the rats exposed to higher 2-MN concentrations, as well as faster 2-MN metabolism and quicker 2-MN removal attributable to the high 2-MN affinity to the kidney [6].

To sum up, 2-MN was rapidly eliminated from the blood of animals subjected to inhalation exposure. Under conditions of inhalation exposure to 2-MN, lung retention of the chemical decreased. In repeated exposure, no significant systemic 2-MN accumulation in the rats could be observed.

DISCUSSION AND CONCLUSIONS

A rapid increase in blood 2-MN concentration during the first hours of exposure was noted in the animals exposed by inhalation to different levels of 2-MN (Figure 1). In guinea pigs, a quick penetration of 2-MN to the blood was noted after oral administration of titrated 2-MN. The distribution of the radioactivity in blood and lungs was at similar levels at all the time points analyzed [11]. Thus, it is very likely that 2-MN concentrations in the blood of animals exposed by inhalation are similar to 2-MN concentrations in the pulmonary parenchyma, which makes one conclude that the retention of 2-MN vapours in rat airways seems to be high.

In the animals subjected to a single or repeated exposure to low-dose 2-MN, the trends of its elimination from blood were fairly similar. The half-lives for phase I and II in those experiments were alike despite the fact that blood 2-MN concentrations at the analyzed time points were different. The differences in blood 2-MN concentrations affected the calculated AUC values. After repeated exposure to 2-MN, the AUC was almost three times as high as that after a single exposure. Two major factors may have accounted for the increase in the AUC value and blood 2-MN concentration in the repeatedly exposed rats. The first one was the difference in the magnitude of exposure to 2-MN during a single and repeated exposure. The mean concentration of 2-MN under conditions of repeated exposure was ca. 15% higher than that during a single exposure. The other factor was the high affinity of 2-MN to the kidney, liver and adipose tissue [6]. The particularly high 2-MN affinity to the liver and kidney, belonging to the rapidly equilibrating compartments, could affect 2-MN distribution and elimination in the rats repeatedly exposed to 2-MN, which has resulted in higher blood 2-MN levels and greater AUC value.

The animals repeatedly exposed to high 2-MN concentrations showed decreased blood 2-MN levels on the consecutive days after the daily 6-hour period of exposure (Figure 3). This has resulted in shorter half-lives of elimination (phase I and II) and a lower AUC value compared with a single-dose exposure (Tables 2 and 3). The underlying factors include lower lung retention of 2-MN in the rats exposed to higher 2-MN concentrations, as well as faster 2-MN metabolism and quicker 2-MN removal attributable to the high 2-MN affinity to the kidney [6].

To sum up, 2-MN was rapidly eliminated from the blood of animals subjected to inhalation exposure. Under conditions of inhalation exposure to 2-MN, lung retention of the chemical decreased. In repeated exposure, no significant systemic 2-MN accumulation in the rats could be observed.

ACKNOWLEDGEMENT

This work was supported under the statutory activities of the Nofer Institute of Occupational Medicine (IMP grant 1.4 “Toxicokinetix and toxie effects of exposure to 2-methylnaphtalene in experimental animals”).

The authors are grateful to Krzysztof Mader for his excellent technical assistance.
REFERENCES