THE TOXICOKINETICS OF 2-METHYLNAPHTALENE IN RATS

RADOSŁAW ŚWIERCZ, WOJCIECH WĄSOWICZ, and WANDA MAJCHEREK

Nofer Institute of Occupational Medicine, Łódź, Poland
Department of Toxicology and Carcinogenesis

Abstract

Background: The aim of the study was to evaluate the toxicokinetics of 2-methylnaphthalene (2-MN) during and after inhalation exposure. Material and Methods: Male Wistar rats were exposed to 2-MN vapours at nominal concentrations of 200 or 400 mg/m³ in the dynamic inhalation chamber for 6 hours or 5 days (6 h/day). Blood samples were collected during and after exposure. Blood concentrations of 2-MN were estimated by gas chromatography using the headspace technique. Results: During a 6-hour exposure to 200 or 400 mg/m³, blood 2-MN concentration increased rapidly within the first or second hour of exposure, respectively, after reaching a plateau. The elimination of 2-MN from blood followed an open two-compartment model. Conclusion: 2-MN was rapidly eliminated from blood of the animals exposed by inhalation to 2-MN. During exposure, lung retention of the chemical was found to decrease. Under conditions of repeated 2-MN exposure, no significant systemic 2-MN accumulation could be observed.

Key words: 2-Methylnaphtalene, Rats, Inhalation exposure, Blood, Toxicokinetics

INTRODUCTION

2-Methylnaphthalene (2-MN) is a petrol component and it can also be found in numerous commercial solvent mixtures [1,2]. 2-MN is one of the many constituents of tobacco smoke [3]. Human systemic 2-MN penetration is attributable primarily to inhalation exposure. Only a few reports assessing 2-MN toxicity in humans or animals under conditions of inhalation exposure are available in literature [4]. Studies on mice have shown that the major toxic effect of 2-MN is on the lungs, and there has been a strong correlation between 2-MN dose and lung damage [5–7]. Animal inhalation study revealed that a single dose of 2-MN produced a strong irritant effect in mice and a neurotoxic effect in rats [8]. The present paper discusses the toxicokinetics of 2-MN in rat blood under conditions of single or repeated exposure to 2-MN.

MATERIALS AND METHODS

Chemicals

2-Methylnaphtalene (2-MN, CAS No.: 91-57-6) was supplied by Fluka. Its chemical purity was 97%.

Animals and inhalation exposure

Male Wistar IMP: WIST rats weighing 290–380 g (3–4 months old) were exposed to 2-MN vapours at the target concentrations of 200 and 400 mg/m³ in the dynamic inhalation chamber (volume 0.25 m³, 15 air changes per hour) for 6 hours or 5 consecutive days (6 hours/day). The animals were given standard laboratory food and water ad libitum, except for the time when they were exposed to 2-MN vapours. The relative temperature in the chamber was maintained at 20–22°C and humidity at 40–50%. The required 2-MN vapours were generated by heating 2-MN to 85°C in a glass washer. The desired vapour concentrations were obtained through air dilution. Vapour sample (0.5 dm³) was absorbed on 2 cm³ liquid sorbent...
(ethyl alcohol from Polmos, Poland; purity 95%). The concentration of 2-MN vapours in the exposure chamber was measured every 30 min by gas chromatography (Hewlett-Packard 5890) with a flame ionisation detector (FID) using capillary column (HP-1; 5 m, 0.53 mm, 2.65 μm film thickness). The operating conditions were: carrier gas — helium, column flow 10 ml/min; make-up gas (helium) 20 ml/min; air 300 ml/min; oven 150°C; inlet split 220°C; detector 230°C.

Biological material collection and analysis

Venous blood samples drawn from the tail vein were collected before (0 h), during (1, 2, 3, 4, 5, 6 h) and after (0.05, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6 h) exposure to 2-MN vapours into 100 μl heparinized glass capillary. The collected samples were stored at +5°C until the determination. Blood 2-MN concentrations were estimated by gas chromatography combined with the headspace technique, using naphthalene as an internal standard [9]. Gas chromatograph (Hewlett-Packard 5890 Series II) was equipped with FID. The operating temperature of the capillary column (HP-1; 30 m, 0.53 mm, 2.65 μm film thickness) was 150°C. The operating conditions were: carrier gas — helium, constant flow mode, column flow 10 ml/min; make-up gas (helium) 20 ml/min; air 300 ml/min; inlet split 220°C, detector 240°C. The limit of detection for 2-MN was 0.01 mg/l for blood analysis.

Statistical analysis

An open two-compartment model plotted with SigmaPlot 4.0 for Windows (Jandel Corporation) was used for the kinetic analysis of 2-MN in blood. The differences in 2-MN blood concentrations between the days of exposure were estimated using Student t-test [10]. P < 0.05 was considered significant.

RESULTS

2-MN concentrations in rat blood during a six-hour inhalation exposure to 2-MN vapours at the nominal concentrations of 200 or 400 mg/m³ and the elimination kinetics data are presented in Figure 1 and Table 1. During a six-hour exposure to 168 or 404 mg/m³ of 2-MN, blood concentration of the chemical increased rapidly within the 1st or 2nd hour of exposure, respectively, and then reached a plateau. The increase in 2-MN concentration in rat blood was dependent on the magnitude of exposure. The kinetics analysis showed that the half-life and the area under the curve (AUC) of 2-MN in blood increased with a rising level of inhalation exposure.

Blood 2-MN concentrations after a six-hour inhalation exposure to 2-MN vapours at nominal concentrations of 200 or 400 mg/m³ and the elimination kinetics data are displayed in Figure 2 and Table 2. A rapid decrease in blood 2-MN levels was noted within the first hour after a single exposure to low 2-MN levels. In the animals exposed to high 2-MN concentrations, this process was noted during the first two hours of observation. During

![Fig. 1. 2-MN concentration in rat blood during 6-hour inhalation exposure to 2-MN vapours at the target concentrations of 200 (blank rectangle) and 400 (filled rectangle) mg/m³](image)

Results are presented as mean ±SD; four animals per group.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2-MN concentration in inhaled air (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>168±55</td>
</tr>
<tr>
<td>absorption equation: y = a×(1-e⁻k×t)</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5.60±1.40</td>
</tr>
<tr>
<td>k</td>
<td>1.20±0.30</td>
</tr>
<tr>
<td>Half-life (h)</td>
<td>0.62±0.20</td>
</tr>
<tr>
<td>AUC (0 → 6 h)</td>
<td>28.90±8.50</td>
</tr>
</tbody>
</table>

AUC — area under curve.
had higher blood 2-MN levels after the first day of exposure compared to the following days. Statistical analysis showed significantly lower blood 2-MN concentrations on exposure days 2 and 3 compared to day 1. At both exposure levels, 2-MN was not detected in the blood during the consecutive days following exposure to 2-MN.

Figure 3 presents 2-MN concentrations in the blood collected from the tail vein during repeated inhalation exposure to 2-MN vapours. No significant differences in blood 2-MN concentrations could be detected between the consecutive days after daily 6-hour exposure to low-level 2-MN. Animals exposed to high 2-MN concentrations had higher blood 2-MN levels after the first day of exposure compared to the following days. Statistical analysis showed significantly lower blood 2-MN concentrations on exposure days 2 and 3 compared to day 1. At both exposure levels, 2-MN was not detected in the blood during the consecutive days following exposure to 2-MN.

During the first hour after repeated exposure at different 2-MN concentrations, the chemical was rapidly eliminated from blood (Figure 4). The elimination rate was calculated using an open two-compartment model. The kinetics equations are presented in Table 3. The half-lives

Table 2. Toxicokinetics of 2-MN elimination from rat blood after 6-hour inhalation exposure to 2-MN vapours at target concentrations of 200 and 400 mg/m³

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2-MN concentration in inhaled air (mg/m³)</th>
<th>elimination equation: y = a×e⁻kt + b×e⁻lt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>168±55</td>
<td>413±43</td>
</tr>
<tr>
<td>a</td>
<td>3.15±0.44</td>
<td>28.80±2.50</td>
</tr>
<tr>
<td>k</td>
<td>1.37±0.20</td>
<td>0.65±0.19</td>
</tr>
<tr>
<td>b</td>
<td>1.73±0.37</td>
<td>10.60±2.40</td>
</tr>
<tr>
<td>l</td>
<td>0.15±0.04</td>
<td>0.05±0.003</td>
</tr>
<tr>
<td>Half-life,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phase I (h)</td>
<td>0.52±0.08</td>
<td>1.13±0.31</td>
</tr>
<tr>
<td>Half-life,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phase II (h)</td>
<td>4.96±1.05</td>
<td>13.97±0.97</td>
</tr>
<tr>
<td>AUC (0 → 6 h)</td>
<td>9.84±2.09</td>
<td>99.70±11.30</td>
</tr>
</tbody>
</table>

AUC — area under curve.

Results are presented as mean ±SD, six animals per group.

Fig. 3. 2-MN concentration in rat blood during repeated inhalation exposure (5 days, 6 h/day) to 2-MN vapours at target concentrations of 200 (blank rectangle and column) and 400 (filled rectangle and column) mg/m³.

Results are presented as mean ±SD; four animals per group.

Fig. 2. 2-MN concentration in rat blood after 6-hour inhalation exposure to 2-MN vapours at the target concentration of 200 (blank rectangle) and 400 (filled rectangle) mg/m³.

Results are presented as mean ±SD, six animals per group.

* Significantly different from day 1 of exposure at p < 0.05.

Fig. 4. 2-MN concentration in rat blood after repeated inhalation exposure (5 days, 6 h/day) to 2-MN vapours at target concentrations of 200 (blank rectangle) and 400 (filled rectangle) mg/m³.

Fig. 1. 2-MN concentration in rat blood after repeated inhalation exposure (5 days, 6 h/day) to 2-MN vapours at target concentrations of 200 (blank rectangle) and 400 (filled rectangle) mg/m³.
The animals repeatedly exposed to high 2-MN concentrations showed decreased blood 2-MN levels on the consecutive days after the daily 6-hour period of exposure (Figure 3). This has resulted in shorter half-lives of elimination (phase I and II) and a lower AUC value compared with a single-dose exposure (Tables 2 and 3). The underlying factors include lower lung retention of 2-MN in the rats exposed to higher 2-MN concentrations, as well as faster 2-MN metabolism and quicker 2-MN removal attributable to the high 2-MN affinity to the kidney [6].

To sum up, 2-MN was rapidly eliminated from the blood of animals subjected to inhalation exposure. Under conditions of inhalation exposure to 2-MN, lung retention of the chemical decreased. In repeated exposure, no significant systemic 2-MN accumulation in the rats could be observed.

ACKNOWLEDGEMENT

This work was supported under the statutory activities of the Nofer Institute of Occupational Medicine (IMP grant 1.4 “Toxicokinetics and toxic effects of exposure to 2-methylnaphtalene in experimental animals”). The authors are grateful to Krzysztof Mader for his excellent technical assistance.
REFERENCES