Damage of testicular cell macromolecules and reproductive capacity of male rats following co-administration of ethambutol, rifampicin, isoniazid and pyrazinamide

Ganna Mykhailivna SHAYAKHMETOVA, Larysa Borysivna BONDARENKO, Valentina Mykolaiivna KOVALENKO
Institute of Pharmacology & Toxicology, National Academy of Medical Sciences of Ukraine, Eugene Potier St. 14, Kyiv, 03680, Ukraine

ABSTRACT
The necessity to minimize adverse effects of tuberculosis chemotherapy requires a comprehensive evaluation of the effects of antituberculosis drugs on the reproductive system and testicular cell macromolecules. The epidemiological situation of tuberculosis in Central and Eastern Europe is getting worse. Data on adverse effects of antituberculosis drugs are scarce concerning particularly their effects on the reproductive system. The aim of the present study was to investigate the potential effect of ethambutol, rifampicin, isoniazid and pyrazinamide co-administration on lipid peroxidation, glutathione content and protein SH-groups, DNA fragmentation levels, the reproductive capacity of Wistar male rats and the antenatal development of their progeny. The rats (150–170 g) were divided into two groups: group I – received antituberculosis drugs suspended in 1% starch gel per os: ethambutol – 155 mg/kg b.w./day, rifampicin – 74.4 mg/kg b.w./day, isoniazid – 62 mg/kg b.w./day, pyrazinamide – 217 mg/kg b.w./day, group II (control) – received only starch gel in corresponding volumes. The contents of TBA-active compounds, glutathione and protein SH-groups in testis and sperm were determined spectrophotometrically, the DNA-fragmentation was determined using an UV transilluminator (BIORAD, USA), reproductive system indices were measured by standard methods. The co-administration of therapeutic doses of ethambutol, isoniazid, rifampicin and pyrazinamide to male rats during the period of spermatogenesis caused an increase in the rate of thiobarbituric acid reactive substances formation in testis and sperm, decrease of testis glutathione and protein SH-group contents, significant changes in DNA fragmentation, fatal decrease of male fertilizing capacity and fertility, and increase of pre- and post-implantation embryo lethality. The changes in reproductive indices could be the result of direct or indirect effects of one or more drugs investigated.

KEY WORDS: antituberculosis drugs; male reproductive capacity; DNA-fragmentation; testis; rat

Introduction
In 2004, the WHO Assembly announced protection of reproductive health as a world-wide priority and approved the first international strategy on this problem (World Health Organization [webpage in the internet]). Of the potential risks for reproductive health, special concern was given to the ability of a great number of xenobiotics (including medicines) to affect the function of the male reproductive system (Ten et al., 2008).

A complex analysis of potential effects of chemicals on the reproductive system is urgently required for the development of improved treatment strategies and the formulation of shorter, more effective and safe regimens for the prevention and treatment of chronic diseases, at simultaneously minimizing adverse effects.

One third of the world’s population has positive tuberculin tests and this number is increasing. Thus analysis of the potential effects of medicines on the reproductive system is important for improving first-line antituberculosis therapy as current therapeutic regimens are associated with a great number of adverse effects and can lead to potential risks for reproductive health. Understanding the nature and the severity of these adverse effects is very important. At present it is known that simultaneous and long-term use of antituberculosis drugs may cause various
negative effects on the metabolism of amino acids and proteins and the rate of protein biosynthesis (Kovalenko et al., 2007; Bondarenko et al., 2006, 2011). This allows to suspect a potential negative effect on reproductive function.

The epidemiological situation of tuberculosis in Central and Eastern Europe keeps worsening (Arinaminpathy et al., 2010). The data on adverse effects of antituberculosis drugs, particularly their effects on the reproductive system, are limited. The aim of the present study was to investigate the potential effect of ethambutol, rifampicin, isoniazid and pyrazinamide co-administration on male rat testis lipid peroxidation, glutathione contents and protein SH-groups, DNA fragmentation levels, reproductive capacity and on antenatal development of their posterity.

Material and methods

Ethambutol, isoniazid, pyrazinamide and rifampicin were supplied by the SIC “Borzhavskovy Chemical-Pharmaceutical Plant” CJSC, Ukraine.

Wistar albino male (n=24) and female (n=48) rats, body weight (b.w.) 150–170g (4 month old) were purchased from Biomodel Service (Kyiv, Ukraine). The animals were kept at standard conditions of nutrition, water and light regimens.

The study was carried out according to the national and international guidelines and the law on animal protection was observed. All animal studies were performed in accordance with the recommendations of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes and approved by the Institutional Animal Care and Use Committee.

The rats were kept for acclimatization during 10 days, then they were randomized into experimental and control groups. Each group included 12 males. Antituberculosis drugs suspended in 1% starch gel were given by gavage in DOTS (directly observed treatment, short-course) regimen at maximal doses used in clinic (Donate, 2006): ethambutol – 155 mg/kg b.w./day, rifampicin – 74.4 mg/kg b.w./day, isoniazid – 62 mg/kg b.w./day, pyrazinamide – 217 mg/kg b.w./day for 60 days (duration of spermatogenesis process and time of germ cell maturation in epididymis). The coefficient for conversion of surface area was taken into account.

Differences were considered statistically significant at p<0.05.

Results

In our experiments we demonstrated an increase of TBARS formation in rat testis (+15%) and epididymal suspension of spermatozoids (+38%) in the group with antituberculosis drugs co-administration in comparison with the control group (Table 1).

The combined administration of antituberculosis drugs to male rats during the whole period of spermatogenesis caused a decrease of testis glutathione contents by 19% in comparison with control (Table 2). Simultaneously
Co-administration of antituberculosis drugs caused the production of oxygen active forms, activation of lipid peroxidation and oxidative stress development (Tasduq et al., 2005). Oxidative stress, in turn, can damage all intracellular macromolecules (glutathione, DNA, RNA, proteins, lipids and ATP). Any changes in the level of these substances are of key importance for cell viability and great deviations cause cell damage and death (Cooke et al., 2003; Jones, 2008).

Table 1. The rate of ascorbate induced formation of TBARS in male rats testis homogenate and epididymal suspension of spermatozo-ids, nmoles/min x mg of protein (M ± S.E.M., n=12).

<table>
<thead>
<tr>
<th>Group</th>
<th>Tissue</th>
<th>Contents of glutathione (nmoles/mg)</th>
<th>Contents of protein SH-groups (nmoles/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antituberculosis drugs</td>
<td>testis</td>
<td>21.25±1.52*</td>
<td>45.44±4.76*</td>
</tr>
<tr>
<td>Control</td>
<td>epididymal suspension</td>
<td>26.32±0.91</td>
<td>58.41±3.64</td>
</tr>
</tbody>
</table>

M ± S.E.M. – mean ± standard error of the mean
*p<0.05 statistically significant in comparison with control

Table 2. Contents of rat testis glutathione and protein SH-groups with combined administration of antituberculosis drugs, nmoles/mg of protein (M ± S.E.M., n =12).

<table>
<thead>
<tr>
<th>Group</th>
<th>Contents of glutathione (nmoles/mg)</th>
<th>Contents of protein SH-groups (nmoles/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antituberculosis drugs</td>
<td>0.30±0.031*</td>
<td>0.16±0.006*</td>
</tr>
<tr>
<td>Control</td>
<td>0.25±0.02</td>
<td>0.10±0.006*</td>
</tr>
</tbody>
</table>

M ± S.E.M. – mean ± standard error of the mean
*p<0.05 statistically significant in comparison with control

Table 3. Rat male fertility index with combined administration of antituberculosis drugs.

<table>
<thead>
<tr>
<th>Group of males</th>
<th>Number of mated females</th>
<th>Number of pregnant females</th>
<th>Fertility index, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antituberculosis drugs</td>
<td>24</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Control</td>
<td>24</td>
<td>22</td>
<td>91.7</td>
</tr>
</tbody>
</table>

The number of living fetuses per one female was also lowered in comparison with the control group (Table 4). The comparison of embryolethality levels in experimental and control groups at different terms of embryonal development demonstrated great negative effects of antituberculosis drugs on male reproductive function. In the experimental group the levels of paternal mediated pre- and postimplantational lethality were 65.3% and 79.9%, respectively.

Table 4. Fertility and embryogenesis parameters on day 20 of gestation – day of mating intact rat females with male rats treated by combined administration antituberculosis drugs.

<table>
<thead>
<tr>
<th>Male group indices</th>
<th>Control</th>
<th>Antituberculosis drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pregnant females</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Total number of corpora lutea</td>
<td>244</td>
<td>75</td>
</tr>
<tr>
<td>Number of corpora lutea per one female, M ± S.E.M.</td>
<td>11.09±0.37</td>
<td>18.75±3.59</td>
</tr>
<tr>
<td>Total number of implantation sites</td>
<td>219</td>
<td>26</td>
</tr>
<tr>
<td>Number of implantation sites per one female, M ± S.E.M.</td>
<td>9.95±0.59</td>
<td>6.50±3.33</td>
</tr>
<tr>
<td>Preimplantational loss, abs/%</td>
<td>18 / 10.25</td>
<td>48 / 65.3</td>
</tr>
<tr>
<td>Preimplantational loss per one female, M ± S.E.M.</td>
<td>0.82±0.32</td>
<td>12.0±3.89*</td>
</tr>
<tr>
<td>Postimplantational loss, abs/%</td>
<td>9 / 4.1</td>
<td>20 / 76.9</td>
</tr>
<tr>
<td>Postimplantational loss per one female, M ± S.E.M.</td>
<td>0.41±0.15</td>
<td>5.0±3.72</td>
</tr>
<tr>
<td>Total number of living fetuses, abs/%</td>
<td>217 / 99.09</td>
<td>7 / 27</td>
</tr>
<tr>
<td>Number of living fetuses per one female, M ± S.E.M.</td>
<td>9.08±0.52</td>
<td>1.75±1.43*</td>
</tr>
</tbody>
</table>

M ± S.E.M. – mean ± standard error of the mean
*p<0.05 statistically significant in comparison with control

*a Preimplantational loss was calculated as: % preimplantational loss = (number of corpora lutea – number of implantation sites) / number of corpora lutea × 100

*b Postimplantational loss was calculated as: % postimplantational loss = (number of lost fetuses / number of implantation sites) × 100

Discussion

Antituberculosis drugs co-administration caused the production of oxygen active forms, activation of lipid peroxidation and oxidative stress development (Tasduq et al., 2005). Oxidative stress, in turn, can damage all intracellular macromolecules (glutathione, DNA, RNA, proteins, lipids and ATP). Any changes in the level of these substances are of key importance for cell viability and great deviations cause cell damage and death (Cooke et al., 2003; Jones, 2008).
On the one hand reactive oxygen species (ROS) play a central role for sperm physiology, such as sperm maturation and capacity. On the other hand, abnormal ROS production is associated with defective sperm function. The delicate balance between ROS production and recycling is essential for spermatogenesis. Excessive generation of seminal ROS can cause male infertility (Hsien et al., 2005). The sulfhydryc group (SH) is a strong nucleophilic group which confers protection against damage by oxidants, electrophilic agents and free radicals. High concentrations of GSH have been observed in rat and mouse testes. A 3-fold increase in the concentration of GSH in rat testis was observed during the onset of spermatogenesis (Donnelly et al., 2000). Isolated hamster spermatocytes and spermatids contained large amounts of reduced GSH, they synthesized GSH and used GSH-dependent defence mechanisms (Donnelly et al., 2000). Changes caused by antituberculosis drugs co-administration in our experiment could be the result of their metabolic transformations in situ and the negative effect of metabolites on spermatogenesis processes and structure-functional characteristics of spermatoids.

Some investigations indicated that apoptosis in cells caused by oxidative stress could be started endogenously by compounds which interact as mediators with receptor systems (Fas/Fas ligands, TNF) (Wang et al., 2005). The intensification of lipid peroxidation as a result of oxidative stress development induces overexpression of the mammalian apoptosis regulator – protooncogen Bcl-2 (Chen et al., 1998). There is also another endogenous way in which the stress signals act as mediators (Wang et al., 2005). The character of DNA fragmentation in human spermatozoa closely correlates with the chemical nature of oxidative base adducts and impaired spermiogenesis agents and free radicals. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases, activated as a result of this apoptotic process, from gaining access to the nuclear DNA and inducing its fragmentation. Simultaneously, oxidative stress is a key event which starts nonprogrammable cell death (Hakansson et al., 1995).

Differences in DNA fragmentation in experimental and control groups may be caused by activation of different sets of nucleases (Hakansson et al., 1995) and different...
rates of lipid peroxidation (Aitken et al., 2011). Depending on the quality and quantity of nucleases, the levels of DNA oxidative damage DNA fragmentation results in high or low molecular weight fractions only or in high and lower molecular weight fractions simultaneously (Hakansson et al., 1995; Aitken et al., 2011).

The changes in DNA fragmentation have a more profound character in comparison with changes in testis morphology (unpublished observations). This is in good correspondence with other authors’ data on the possibility of DNA fragmentation disturbances proceeding not only to further apoptotic processes but also to toxic cell death events (Ray et al., 1993). The DNA damage in male germ cells can be accompanied with poor fertilization rates, defective preimplantation embryonic development, high rates of miscarriage and morbidity in the offspring (Aitken et al., 2007). In our experiments postimplantational lethality may have been caused by genotoxic action of substances (Clegg et al., 2001). This assumption could be confirmed by the data of experiments on mice demonstrating weak genotoxicity of pyrazinamide at doses of 125, 250 and 500 mg/kg b.w. (Anitha et al. 1994). Moreover, in vitro experiments showed that one isoniazid metabolite – mono acetylhydrazine – increased the number of Salmonella typhimurium TA100 and TA1535 revertant mutations and the number of micronuclei number of zid metabolite – mono acetylhydrazine – increased the number of Salmonella typhimurium TA100 and TA1535 revertant mutations and the number of micronuclei.

Moreover, in vitro experiments showed that one isoniazid metabolite – mono acetylhydrazine – increased the number of Salmonella typhimurium TA100 and TA1535 revertant mutations and the number of micronuclei number of zid metabolite – mono acetylhydrazine – increased the number of Salmonella typhimurium TA100 and TA1535 revertant mutations and the number of micronuclei number of zid metabolite – mono acetylhydrazine – increased the number of Salmonella typhimurium TA100 and TA1535 revertant mutations and the number of micronuclei.

As to preimplantational lethality, it must be stressed that for exact determination of the involvement of medicines in mutagenic as well as nonmutagenic effects (such as non adequate number of normal and active spermatozoids, disturbances in their transport and penetration into the ovum) additional experiments of mutagenicity and spermatotoxicity of the given drugs must be carried out. At least for ethambutol, it was established that at doses of 25 mg/kg b.w. and 250 mg/kg b.w. this compound caused spermatogenic epithelium disturbances with further blocking of spermatogenesis in rats and cocks (Asole et al., 1976).

Combined administration of therapeutic doses of ethambutol, isoniazid, rifampicin and pyrazinamide to male rats during the whole period of spermatogenesis caused an increase of TBA-active compound contents in rat testis and epididymis, decrease of testis glutathione and protein SH-group contents, profound changes in DNA fragmentation, fatal lowering of male fertilizing capacity and fertility, and increasing levels of pre- and postimplantation embryolethality. The changes in reproductive indices could be the result of direct or mediated action of one or more of the drugs used.

Acknowledgement

The authors would like to thank the SIC “Bozrahovsky Chemical-Pharmaceutical Plant” CJSC, Ukraine, for supplying antituberculosis drugs substances.

REFERENCES

Asole A, Panu R, Palmeni G. (1976). Effects of ethambutol on the seminal epi-
Bhide SV, Bhalaroa EB, Sarode AV, Maro GB. (1984). Mutagenicity and carcino-
Bondarenko LB, Shayakhmetova GM, Byshovets TF, Kovalenko VM. (2011). Pyrazinamide-mediated changes in rat type I collagen and spermatogenes-
Burchiel SW, Davis DA, Ray SD et al. (1992). DMBA-induced cytotoxicity in lymphoid and nonlymphoid organs of B6C3F1 mice: relation of cell death to target cell intracellular calcium and DNA damage. Toxicol Appl Pharma-
Chen QI, Cederbaum AI. (1998). Cytotoxicity and apoptosis produced by cy-
Clegg ED, Perreault SD, Klinefelger GR. (2001). Assessment of male reproduc-
Ganna Mykhailivna Shayakhmetova, Larysa Borysivna Bondarenko, Valentina Mykolaivna Kovalenko

Effect of ethambutol, rifampicin, isoniazid and pyrazinamide on reproduction

ISSN: 1337-6853 (print version) 1337-9569 (electronic version)


World Health Organization [webpage in the Internet]. Reproductive health strategy to accelerate progress towards the attainment of international development goals and targets Global strategy adopted by the 57th World Health Assembly. Available from: http://www.who.int/reproductivehealth/publications/general/RHR_04_8/en/index.html
