Algorithm for Monitoring Minimum Cost Flow in Fuzzy Dynamic Networks

Alexander Bozhenyuk¹, Evgeniya Gerasimenko², ¹-² Southern Federal University

Abstract – The present paper examines the task of minimum cost flow finding in a fuzzy dynamic network with lower flow bounds. The distinguishing feature of this problem statement lies in the fuzzy nature of the network parameters, such as flow bounds, transmission costs and transit times. The arcs of the considered network have lower bounds. Another feature of this task is that fuzzy flow bounds, costs and transit times can vary depending on the flow departure time. Algorithm, which implements the solution of considered problem, is proposed.

Keywords – Fuzzy dynamic network, lower flow bounds, minimum cost flow

I. INTRODUCTION

Conventional tasks of finding a maximum flow and minimum cost flow assume that the instant flow passes along the arcs of the graph that certainly is simplification of the real life. Such tasks are called static flow tasks. In fact, it turns out that the flow spends certain time passing along the arcs of the graph. Then, we turn to dynamic networks, in which each flow unit passes from the source to the sink for a period of time less than given. Dynamic network is a network \(G = (X, A) \), where \(X = \{x_1, x_2, ..., x_n\} \) – the set of nodes, \(A = \{x_i, x_j\} \), \(i, j \in I = 1, n \) – the set of arcs. Each arc of the dynamic graph \((x_i, x_j)\) is denoted by two parameters: transit time \(\tau_{ij} \) and arc capacity \(u_{ij} \). The time horizon \(T = \{0,1, ..., p\} \) determining that all flow units sent from the source must arrive at the sink within time \(p \) is given [1].

Dynamic networks describe complex systems, problems of decision-making, models, whose parameters can vary over time. Such models can be found in communication systems, economic planning, transportation systems and many other applications, so they have a wide range of practical applications.

II. LITERATURE REVIEW

Historically, the maximum flow finding in dynamic graphs was the first task in dynamic graphs, described in the literature. The notion “dynamic flow” was proposed by Ford and Fulkerson [2] as a task of maximum dynamic flow finding in a network. This problem is related to finding a maximum flow, passing from the source \((s)\) to the sink \((t)\), \(s, t \in X \) in the network for \(p \) discrete time periods, starting from zero period of time.

The task of minimum cost flow finding in dynamic graphs is that of searching for flows of the given value, which have a minimum cost in dynamic graphs. This field, which appeared later, is a more complex sphere of investigations. Fleischer and Skutella [3] examined this problem. Cai et al. [4], Halpern [5] considered networks with transit parameters. The subproblem of the minimum cost flow finding in dynamic graphs is the shortest path problem. This problem was introduced by Cooke and Halsey [6] and was widely reported in the literature by such authors as Ahuja et al. [7], Pallottino and Scutella [8] in terms of nonnegative transit times.

The fact that the flow, passing along the arcs of the graph, can have lower bounds usually is not taken into account in the literature. For example, a network that consists of railways, sea and air roads is considered. Therefore, the freight trains have a certain level of load, which exceeds a profitability threshold; transport planes do not fly at a low load. Thus, it is necessary to introduce lower flow bounds, which can lead to the absence of feasible flow.

III. PROBLEM STATEMENT

The task of minimum cost flow finding in a fuzzy dynamic network with fuzzy lower and upper flow bounds has the following problem statement:

Minimize \(\sum_{\theta=0}^{p} \sum_{(x_i, x_j) \in A} \tilde{c}_{ij}(\theta) \times \tilde{z}_{ij}(\theta), \) \hspace{1cm} (1)

\[\sum_{\theta=0}^{p} \sum_{x_i \in X} [\tilde{z}_{ij}(\theta) - \tilde{z}_{ij}(\theta - \tau_{ji}(\theta))] - \tilde{p}(p) = 0, \] \hspace{1cm} (2)

\[\sum_{x_i \in X} [\tilde{z}_{ij}(\theta) - \tilde{z}_{ij}(\theta - \tau_{ji}(\theta))] = 0, \] \hspace{1cm} (3)

\[\sum_{\theta=0}^{p} \sum_{x_i \in X} [\tilde{z}_{ij}(\theta) - \tilde{z}_{ij}(\theta - \tau_{ji}(\theta))] + \tilde{p}(p) = 0, \] \hspace{1cm} (4)

\[\tilde{z}_{ij}(\theta) \leq \tilde{u}_{ij}(\theta), \text{ for } \theta: \theta + \tau_{ij}(\theta) \leq p, \theta \in T. \] \hspace{1cm} (5)
leaving the source for \(p \) time periods \(\sum_{\theta=0}^{p} \tilde{\xi}_{ij}(\theta - \tau_{ij}) \). Equation (4) reflects that the given flow value \(\tilde{\rho} \) for \(p \) time periods is equal to the flow entering the sink for \(p \) time periods \(\sum_{\theta=0}^{p} \tilde{\xi}_{ji}(\theta - \tau_{ji}) \). The amount of flow entering the source \(\sum_{\theta=0}^{p} \tilde{\xi}_{ij}(\theta - \tau_{ij}) \) for \(p \) time periods is equal to the flow \(\sum_{\theta=0}^{p} \tilde{\xi}_{ji}(\theta - \tau_{ji}) \) leaving the sink for \(p \) time periods and is equal to \(\tilde{\rho} \). For each node \(x_i \) except the source and the sink and for each time period \(\theta \) the amount of flow \(\tilde{\xi}_{ij}(\theta - \tau_{ij}) \) entering \(x_i \) at each period of time \((\theta - \tau_{ij}) \) is equal to the amount of flow \(\tilde{\xi}_{ji}(\theta - \tau_{ji}) \) leaving \(x_i \) at time \(\theta \) as stated in (3). Inequality (5) indicates that the flows \(\tilde{\xi}_{ij}(\theta) \) for time periods \(\theta: \theta + \tau_{ij} \leq p, \theta \in T \) should be more than lower flow bounds \(\tilde{\bar{\lambda}}_{ij}(\theta) \) and less than upper flow bounds \(\bar{u}_{ij}(\theta) \) along the corresponding arcs.

In other words, it is necessary to carry \(\tilde{\rho}(p) \) flow units with minimum cost in a dynamic network taking into account lower flow bounds in such a way that the last flow unit would enter the sink at time period not later than \(p \). In this case, upper bounds, lower bounds and transmission costs are transit.

We represent the formal algorithm describing the solution to the problem of finding a minimum cost dynamic flow with upper and lower fuzzy flow bounds in a fuzzy transportation network with time-varying fuzzy flow bounds, transmission costs and time-varying crisp flow transit times along the arcs.

Step 1. Go to the time-expanded fuzzy static graph \(\tilde{G}_p \) from the given fuzzy dynamic graph \(\tilde{G} \) by expanding the original dynamic graph in the time dimension by making a separate copy of every node \(x_i \in X \) at every time \(\theta \in T \). Let \(\tilde{G}_p = (X_p, \tilde{A}_p) \) represent a fuzzy time-expanded static graph of the original dynamic fuzzy graph. The set of nodes \(X_p \) of the graph \(\tilde{G}_p \) is defined as \(X_p = \{ (x_i, \theta): (x_i, \theta) \in X \times T \} \).

The set of arcs \(\tilde{A}_p \) consists of arcs from each node-time pair \((x_i, \theta) \in X_p \) to every node-time pair \((x_j, \theta + \tau_{ij}(\theta)) \), where \(x_j \in \Gamma(x_i) \) and \(\theta + \tau_{ij}(\theta) \leq p \). Fuzzy upper flow bounds \(\tilde{\bar{u}}(x_i, x_j, \theta, \theta + \tau_{ij}(\theta)) \) joining \((x_i, \theta) \) with \((x_j, \theta + \tau_{ij}(\theta)) \) are equal to \(\tilde{\bar{u}}_{ij}(\theta) \) and fuzzy lower flow bounds \(\tilde{\bar{u}}(x_i, x_j, \theta, \theta + \tau_{ij}(\theta)) \) joining \((x_i, \theta) \) with \((x_j, \theta + \tau_{ij}(\theta)) \) are equal to \(\tilde{\bar{u}}_{ij}(\theta) \), transmission cost \(\tilde{c}(x_i, x_j, \theta, \theta + \tau_{ij}(\theta)) \) of one flow unit along the arc connecting the node-time pair \((x_i, \theta) \) with \((x_j, \theta + \tau_{ij}(\theta)) \) is equal to \(\tilde{c}_{ij}(\theta) \).

Step 2. Determine, if the time-expanded fuzzy graph \(\tilde{G}_p \), corresponding to the initial dynamic graph \(\tilde{G} \), has a feasible flow. Introduce the artificial source \(s^* \) and sink \(t^* \) in the graph \(\tilde{G}_p \) and turn to the graph \(\tilde{G}_p^* = (X_p^*, \tilde{A}_p^*) \) without lower flow bounds according to the method, described in [12]. The set \(X_p^* \) consists of the nodes from the set \(X_p \) and the artificial nodes \(s^* \) and \(t^* \). Introduce the arcs, connecting the node-time pair \((t, \forall \theta \in T)\) and \((s, \forall \theta \in T)\) with upper fuzzy flow bound \(\tilde{\bar{u}}(t,s, \forall \theta \in T, \forall \theta \in T) = \infty \), lower fuzzy flow bound \(\tilde{\bar{u}}(t,s, \forall \theta \in T, \forall \theta \in T) = \tilde{0} \), transmission cost \(\tilde{c}^*(t,s, \forall \theta \in T, \forall \theta \in T) = \tilde{0} \) in the graph \(\tilde{G}_p^* \). It means that every node \(t \) in each time period from \(p \) is connected with every node \(s \) at all time periods in the graph \(\tilde{G}_p^* \). Introduce the following modification for each arc connecting the node-time pair \((x_i, \theta)\) with the node-time pair \((x_j, \theta + \tau_{ij}(\theta))\) with nonzero lower fuzzy flow bound \(\tilde{\bar{u}}(x_i, x_j, \theta, \theta) \neq \tilde{0} \): 1) reduce \(\tilde{\bar{u}}(x_i, x_j, \theta, \theta) \) to \(\tilde{\bar{u}}^*(x_i, x_j, \theta, \theta) = \tilde{\bar{u}}(x_i, x_j, \theta, \theta) - \tilde{\bar{u}}(x_i, x_j, \theta, \theta) \) \}, \(\tilde{\bar{u}}^*(t,s, \forall \theta \in T, \forall \theta \in T) = \tilde{0} \), 2) introduce the arcs connecting \(s^* \) with \((x_i, \theta)\), and the arcs connecting \(t^* \) with \((x_j, \theta)\) with upper fuzzy flow bounds equal to lower fuzzy flow bounds \(\tilde{\bar{u}}^*(x_i, x_j, \theta, \theta) = \tilde{\bar{u}}^*(x_i, x_j, \theta, \theta) \) zero lower fuzzy flow bounds \(\tilde{\bar{u}}^*(t,s, \forall \theta \in T, \forall \theta \in T) = \tilde{0} \) and zero transmission costs \(\tilde{c}^*(x_i, x_j, \theta, \theta) = \tilde{0} \).

Step 3. Build a fuzzy residual network \(\tilde{G}_p^\mu \) depending on the flow values going along the arcs of the graph \(\tilde{G}_p^* \). Fuzzy residual network \(\tilde{G}_p^\mu = (X_p^*, \tilde{A}_p^\mu) \) is constructed according to the time-expanded fuzzy static graph \(\tilde{G}_p^* \) without lower fuzzy flow bounds depending on the flow values \(\tilde{\bar{u}}(x_i, x_j, \theta, \theta) \) going along it as follows: each arc in the fuzzy residual network \(\tilde{G}_p^\mu \), connecting the node-time pair \((x_i^0, \theta)\) with the node-time pair \((x_j^0, \theta)\), whose flow \(\tilde{\bar{u}}^\mu(x_i, x_j, \theta, \theta) = \tilde{\bar{u}}(x_i, x_j, \theta, \theta) - \tilde{\bar{u}}^*(x_i, x_j, \theta, \theta) \) with transit time \(\tilde{\bar{c}}^\mu(x_i, x_j, \theta, \theta) = \tilde{\bar{c}}^*(x_i, x_j, \theta, \theta) \) and modified transmission cost \(\tilde{\bar{c}}^\mu(x_i, x_j, \theta, \theta) = \tilde{\bar{c}}^*(x_i, x_j, \theta, \theta) \), and a reverse arc connecting the node-time pair \((x_j^0, \theta)\) with
(x^\mu, \theta) with residual fuzzy arc capacity
\bar{u}^\mu(x_j, x_i, \theta, \theta) = \xi^\mu(x_j, x_i, \theta, \theta) and transit time
\tau^\mu(x_j, x_i, \theta, \theta) = -\tau^* (x_j, x_i, \theta, \theta) and modified transmission cost
\tilde{c}^\mu(x_j, x_i, \theta, \theta) = -\tilde{c}^* (x_j, x_i, \theta, \theta).

Step 4. Search for the augmenting minimum cost path \tilde{P}^\mu_p from the artificial source \bar{s}^* to the artificial sink \bar{r}^* in the constructed fuzzy residual network according to the Bellman-Ford algorithm [13].

(I) Go to step 5 if the augmenting path \tilde{P}^\mu_p is found.

(II) The flow value \phi^* \leq \sum_{(i,j), \theta \in \delta} \tilde{f}(i,j, x, \theta, \theta) is obtained, which is the maximum flow in \tilde{G}^*_p, if the path is not found. It means that it is impossible to pass any unit of flow, but not all the artificial arcs are saturated. Therefore, the time-expanded graph \tilde{G}_p has no feasible flow as the initial dynamic fuzzy graph \tilde{G} and the task has no solution. Exit.

Step 5. Pass the minimum from the arc capacities \Delta^\mu = \min [\bar{u}^\mu(x_j, x_i, \theta, \theta)], (x_j, x_i) \in \tilde{P}^\mu_p, included in the path of minimum cost \tilde{P}^\mu_p along this path.

Step 6. Update the fuzzy flow values in the graph \tilde{G}^*_p: replace the fuzzy flow \tilde{c}^\mu(x_j, x_i, \theta, \theta) along the corresponding arcs going from (x_j, \theta) to (x_i, \theta) from \tilde{G}^*_p by
\tilde{c}^* (x_j, x_i, \theta, \theta) - \Delta^\mu for arcs connecting node-time pair (x^\mu, \theta) with (x_j, \theta) in \tilde{G}^*_p with nonpositive modified cost
\bar{c}^\mu(x_j, x_i, \theta, \theta) \leq 0 and replace the fuzzy flow
\tilde{c}^*(x_j, x_i, \theta, \theta) along the arcs going from (x_j, \theta) to (x_i, \theta) from \tilde{G}^*_p by
\tilde{c}^*(x_j, x_i, \theta, \theta) + \bar{c}^\mu for arcs connecting node-time pair (x^\mu, \theta) with (x_j, \theta) in \tilde{G}^*_p with nonnegative modified cost
\bar{c}^\mu(x_j, x_i, \theta, \theta) \geq 0 . Replace \tilde{c}^*(x_j, x_i, \theta, \theta) by
\tilde{c}^*(x_j, x_i, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p.

Step 7 (I) If the flow value \tilde{c}^\mu(x_j, x_i, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p of minimum cost \tilde{c}(\tilde{c}^\mu(x_j, x_i, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p) is less than
\sum_{(i,j), \theta \in \delta} \tilde{f}(i,j, x, \theta, \theta), i.e., not all artificial arcs become saturated, go to step 3.

(II) If the flow value \tilde{c}^\mu(x_j, x_i, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p of minimum cost \tilde{c}(\tilde{c}^\mu(x_j, x_i, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p) is equal to
\sum_{(i,j), \theta \in \delta} \tilde{f}(i,j, x, \theta, \theta), i.e., all arcs from the artificial source to the artificial sink become saturated, then the value
\tilde{c}^\mu(x_j, x_i, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p is the required value of maximum flow \tilde{c}^* of minimum cost \tilde{c}(\tilde{c}^\mu(x_j, x_i, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p) . In this case the total flow along the artificial arcs connecting the node-time pairs (t, \theta) with (x, \theta) \in T, \theta \in T, \theta \in T, \theta \in T, \theta \in T. is equal to
\sum_{(i,j), \theta \in \delta} \tilde{f}(i,j, x, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p determines the feasible flow in time-expanded graph \tilde{G}^*_p with the flow value
\sum_{(i,j), \theta \in \delta} \tilde{f}(i,j, x, \theta, \theta) + \Delta^\mu \times \tilde{P}^\mu_p \leq \tilde{c}^* of minimum cost. Turn to the graph \tilde{G}^*_p from the graph \tilde{G}^*_p as follows: reject artificial nodes and arcs, connecting them with other nodes. The feasible flow vector \tilde{c}^* = \tilde{c}^*(x_j, x_i, \theta, \theta) of the value \tilde{c}^* of minimum cost is defined as follows:
\tilde{c}^*(x_j, x_i, \theta, \theta) = \tilde{c}^*(x_j, x_i, \theta, \theta) + \tilde{f}(x_j, x_i, \theta, \theta) , where
\tilde{c}^*(x_j, x_i, \theta, \theta) - the flows, going along the arcs of the graph
\tilde{G}^*_p after deleting all artificial nodes and connecting arcs. The network \tilde{G}(\tilde{c}^*) is obtained. Go to step 8.

Step 8. Construct the residual network \tilde{G}(\tilde{c}^\mu(x_j, x_i, \theta, \theta)) taking into account the feasible flow vector
\tilde{c}^* = \tilde{c}^*(x_j, x_i, \theta, \theta) in \tilde{G}^*_p adding the artificial source and sink and the arcs with infinite arc capacity and zero cost, connecting s' with true sources and i' with true sinks according to the following rules: for all arcs, if
\tilde{c}^*(x_j, x_i, \theta, \theta) < \tilde{c}^*(x_j, x_i, \theta, \theta), include the corresponding arc in
\tilde{G}(\tilde{c}^\mu(x_j, x_i, \theta, \theta)) with the arc capacity
\tilde{c}^\mu(x_j, x_i, \theta, \theta) = \tilde{c}^*(x_j, x_i, \theta, \theta) - \tilde{c}^*(x_j, x_i, \theta, \theta) , and the modified cost
\tilde{c}^\mu(x_j, x_i, \theta, \theta) = \tilde{c}^*(x_j, x_i, \theta, \theta). For all arcs, if
\tilde{c}^*(x_j, x_i, \theta, \theta) > \tilde{f}(x_j, x_i, \theta, \theta) , include the corresponding arc in
\tilde{G}(\tilde{c}^\mu(x_j, x_i, \theta, \theta)) with the arc capacity
\tilde{c}^\mu(x_j, x_i, \theta, \theta) = \tilde{c}^*(x_j, x_i, \theta, \theta) - \tilde{f}(x_j, x_i, \theta, \theta) and the modified cost
\tilde{c}^\mu(x_j, x_i, \theta, \theta) = -\tilde{c}^*(x_j, x_i, \theta, \theta).

Step 9. Define the minimum cost path \tilde{P}^\mu_p according to the Bellman-Ford algorithm from s' to i' in the constructed residual network \tilde{G}(\tilde{c}^\mu(x_j, x_i, \theta, \theta)).

Step 10. Pass the flow value \Delta^\mu = \min [\tilde{c}^\mu(x_j, x_i, \theta, \theta)], (x_j, x_i) \in \tilde{P}^\mu_p along the found path.

Step 11. Update the flow values in the graph \tilde{G}^*_p: replace the flow \tilde{c}^\mu(x_j, x_i, \theta, \theta) by
\tilde{c}^\mu(x_j, x_i, \theta, \theta) - \Delta^\mu along the corresponding arcs, going from (x_j, \theta) to (x_i, \theta) from \tilde{G}^*_p for arcs, connecting node-time pair (x^\mu, \theta) with (x^\mu, \theta) in
\tilde{G}(\tilde{c}^\mu(x_j, x_i, \theta, \theta)) with nonpositive modified cost.
\[c^\mu(x_i, x_j, \theta, \vartheta) \leq 0 \] and replace the flow \(\vec{\xi}(x_i, x_j, \theta, \vartheta) \) by \(\vec{\xi}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \) along the corresponding arcs, going from \((x_i, \theta)\) to \((x_j, \theta)\) from \(\tilde{G}_p \) for arcs, connecting node-time pair \((x_i^p, \theta)\) with \((x_j^p, \theta)\) in \(\tilde{G}(\vec{c}^\mu(x_i, x_j, \theta, \vartheta)) \) with nonnegative modified cost \(\vec{c}^\mu(x_i, x_j, \theta, \vartheta) \geq 0 \) and replace the flow value in \(\tilde{G}_p \):

\[\vec{\xi}(x_i, x_j, \theta, \vartheta) \rightarrow \vec{\xi}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \cdot \bar{P}_p^\mu . \]

Step 12. Reject the artificial nodes and arcs with flows, connecting them with artificial nodes and find the total flow from the set of sources to the set of sinks for all time periods not later than \(p \).

(I) If the flow value \(\vec{\xi}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \cdot \bar{P}_p^\mu \) from the set of sources to the set of sinks of minimum cost \(\tilde{c}(\vec{c}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \cdot \bar{P}_p^\mu) \) for \(p \) time periods is less than the given flow value \(\tilde{\rho}(p) \), then go to step 8.

(II) If the flow value \(\vec{\xi}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \cdot \bar{P}_p^\mu \) for \(p \) time periods from the set of sources to the set of sinks of minimum cost \(\tilde{c}(\vec{c}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \cdot \bar{P}_p^\mu) \) is equal to \(\tilde{\rho}(p) \), the given flow value of minimum cost in \(\tilde{G}_p \) is found and go to step 13.

(III) If the flow value \(\vec{\xi}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \cdot \bar{P}_p^\mu \) for \(p \) time periods from the set of sources to the set of sinks of minimum cost \(\tilde{c}(\vec{c}(x_i, x_j, \theta, \vartheta) + \vec{\delta}_p^\mu \cdot \bar{P}_p^\mu) \) is more than \(\tilde{\rho}(p) \) and less than \(\tilde{\nu}(p) \), then the required flow in \(\tilde{G}_p \) is \(\vec{\xi}(x_i, x_j, \theta, \vartheta) + (\vec{\delta}_p^\mu - \tilde{\nu}(p) + \tilde{\rho}(p)) \cdot \bar{P}_p^\mu \) of minimum cost \(\tilde{c}(\vec{c}(x_i, x_j, \theta, \vartheta) + (\vec{\delta}_p^\mu - \tilde{\nu}(p) + \tilde{\rho}(p)) \cdot \bar{P}_p^\mu) \) and go to step 13.

Step 13. Turn to the initial dynamic graph \(\tilde{G} \) from the time-expanded static graph \(\tilde{G}_p \) as follows: the given dynamic flow of minimum cost in the graph \(\tilde{G} \) for \(p \) time periods is equal to the flow, leaving the set of sources for all time periods and entering the set of sinks for all time periods not later than \(p \). Each path, connecting the node-time pairs \((s, \theta)\) with \((t, \xi = \theta + \tau_\mu(\theta)) \xi \in T \) , with the flow \(\vec{\xi}(s, t, \theta, \vartheta) \) passing along it in \(\tilde{G}_p \) of the cost \(\tilde{c}(\vec{\xi}(s, t, \theta, \vartheta)) \) corresponds to the flow \(\tilde{\xi}_{\mu}(\theta) \) of the cost \(\tilde{c}(\vec{\xi}_{\mu}(\theta)) \) in \(\tilde{G} \).

Therefore, the proposed algorithm allows finding the minimum cost flow in a fuzzy dynamic transportation network with time-varying parameters and lower and upper fuzzy flow bounds.

IV. NUMERICAL EXAMPLE

Let us consider an example, which illustrates the implementation of the algorithm. Let the transportation network, which is the part of railway network, be presented as a fuzzy directed network, obtained from GIS “Object Land” [14], as shown in Fig. 1.

![Fig. 1. Initial dynamic graph \(\tilde{G} \)](image)

TABLE I

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, x_2))</td>
<td>(10,1,5,2)</td>
<td>(10,1,5,2)</td>
<td>(8,1,1)</td>
<td>(10,1,5,2)</td>
</tr>
<tr>
<td>((x_1, x_3))</td>
<td>(10,1,5,2)</td>
<td>(15,3,2)</td>
<td>(18,3,3)</td>
<td>(18,3,3)</td>
</tr>
<tr>
<td>((x_1, x_4))</td>
<td>(18,3,3)</td>
<td>(20,3,4)</td>
<td>(24,5,4)</td>
<td>(24,5,4)</td>
</tr>
<tr>
<td>((x_2, x_6))</td>
<td>(30,5,6)</td>
<td>(25,4,5)</td>
<td>(40,7,7)</td>
<td>(30,5,6)</td>
</tr>
<tr>
<td>((x_3, x_4))</td>
<td>(25,4,5)</td>
<td>(18,3,3)</td>
<td>(20,3,4)</td>
<td>(20,3,4)</td>
</tr>
<tr>
<td>((x_4, x_5))</td>
<td>(30,5,6)</td>
<td>(30,5,6)</td>
<td>(25,4,5)</td>
<td>(25,4,5)</td>
</tr>
<tr>
<td>((x_5, x_6))</td>
<td>(30,5,6)</td>
<td>(30,5,6)</td>
<td>(45,8,8)</td>
<td>(25,4,5)</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>(\xi)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, x_2))</td>
<td>(30,7,6)</td>
<td>(60,10,9)</td>
<td>(60,10,9)</td>
<td>(30,7,6)</td>
</tr>
<tr>
<td>((x_1, x_3))</td>
<td>(75,11,12)</td>
<td>(50,9,8)</td>
<td>(18,3,3)</td>
<td>(18,3,3)</td>
</tr>
<tr>
<td>((x_1, x_4))</td>
<td>(70,10,10)</td>
<td>(30,7,6)</td>
<td>(20,3,4)</td>
<td>(18,3,3)</td>
</tr>
<tr>
<td>((x_2, x_5))</td>
<td>(30,7,6)</td>
<td>(25,3,5)</td>
<td>(50,9,8)</td>
<td>(30,7,6)</td>
</tr>
<tr>
<td>((x_3, x_4))</td>
<td>(25,4,5)</td>
<td>(30,7,6)</td>
<td>(80,15,15)</td>
<td>(20,3,4)</td>
</tr>
<tr>
<td>((x_4, x_5))</td>
<td>(30,7,6)</td>
<td>(100,20,17)</td>
<td>(80,15,15)</td>
<td>(25,4,5)</td>
</tr>
<tr>
<td>((x_5, x_6))</td>
<td>(30,7,6)</td>
<td>(30,7,6)</td>
<td>(80,15,15)</td>
<td>(25,4,5)</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1, x_2))</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>((x_1, x_3))</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>((x_1, x_4))</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>((x_2, x_6))</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>((x_3, x_5))</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>((x_4, x_5))</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>((x_5, x_6))</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
graph \tilde{G}_p without lower flow bounds, which is shown in Fig. 3.

Connectors, which have the same shape (for example, ▲), connect the corresponding pair of nodes in Fig. 3. Therefore, each node x_6 for all time periods is connected with each node x_1 for all time periods. It is represented by the connectors of the same shape. All arcs, going from x_6 for all time periods to the nodes x_1 for all time periods have infinite upper flow bounds, zero lower flow bounds and zero costs.

Applying the steps of the algorithm, we find the paths of minimum cost. Find the first path of minimum cost from s^* to t^* according to the Bellman–Ford algorithm in the residual network, which initially corresponds to \tilde{G}_p. We get two identical paths of the minimum cost: $s^*,(x_2,2),(x_6,3),(x_1,1),t^*$ and $s^*,(x_2,2),(x_6,3),(x_1,0),t^*$ of the cost $(50,9,8)$ conventional units.

Let us choose the first path and push min from $[(10,1,5,2),(40,7,7),\infty,(10,1,5,2)]$, i.e., $(10,1,5,2)$ flow units along it, i.e., the flow $\tilde{0}$ goes to $(10,1,5,2) \times \tilde{P}_1^\mu$. Find the second path of minimum cost \tilde{P}_2^μ according to the Bellman–Ford algorithm in the residual network \tilde{G}_p^μ:

$\tilde{P}_2^\mu = s^*,(x_4,1),(x_2,2),(x_6,3),(x_1,0),t^*$.

Push min from $[(18,3,3),(30,5,6),(45,8,8),\infty,(18,3,3)]$, i.e., $(18,3,3)$ flow units along the path $\tilde{P}_2^\mu = s^*,(x_4,1),(x_2,2),(x_6,3),(x_1,0),t^*$, i.e., flow $(10,1,5,2) \times \tilde{P}_1^\mu$ goes to $(10,1,5,2) \times \tilde{P}_1^\mu + (18,3,3) \times \tilde{P}_2^\mu$. The flow value $(10,1,5,2) \times \tilde{P}_1^\mu + (18,3,3) \times \tilde{P}_2^\mu$ is equal to $\sum_{(x_i,x_j,\theta,\theta) \neq \emptyset} \tilde{1}(x_i,x_j,\theta,\theta)$, so the maximum flow is found in the expanded graph \tilde{G}_p with introduced artificial arcs and nodes.

This flow value is less than the given flow rate $(30,5,6)$ units; therefore, we turn to determining the given flow cost in the initial expanded graph. Construct the network with flow $\tilde{G}_p(\tilde{\xi})$, deleting artificial nodes and arcs and taking into account that the feasible flow vector $\tilde{\xi} = (\tilde{\xi}(x_i,x_j,\theta,\theta))$ of the value $\tilde{\sigma}$ is defined as $\tilde{\xi}(x_i,x_j,\theta,\theta) = \tilde{\xi}^*(x_i,x_j,\theta,\theta) + \tilde{1}(x_i,x_j,\theta,\theta)$, where $\tilde{\xi}^*(x_i,x_j,\theta,\theta)$ – the flows, passing along the arcs of the graph \tilde{G}_p after deleting the artificial nodes and connected arcs. Construct a network with the feasible flow, as shown in Fig. 4.

Introduce the artificial source and sink, connecting them with the true sources and sinks by the arcs with infinite arc capacities and construct the residual network for the graph in Fig. 4, as shown in Fig. 5. Find a path of minimum cost \tilde{P}_1^μ according to the Bellman–Ford algorithm in the residual network $\tilde{G}(\tilde{\xi}(x_i,x_j,\theta,\theta))$:

$\tilde{P}_1^\mu = s^*,(x_1,1),(x_2,2),(x_6,3),t^*$.

Pass min from $[\infty,(8,1,5,2),(30,5,6),\infty]$, i.e., $(8,1,5,2)$ flow units along this path, the feasible flow turns to $\tilde{\xi}(x_i,x_j,\theta,\theta) + (8,1,5,2) \times \tilde{P}_1^\mu$ from $\tilde{\xi}(x_i,x_j,\theta,\theta)$, therefore, the flow value $(28,4,5) + (8,1,5,2) \times \tilde{P}_1^\mu$ exceeds the given flow $(30,5,6)$, thus, the given flow value can be found as...
\[(28,4,5) + ((8,1.5,2) - (36,6,7) + (30,5,6)) \times (s', (x_1,1), (x_2,2), (x_6,3), t') = ((28,4,5) + (2,1.5,2)) \times (s', (x_1,1), (x_2,2), (x_6,3), t').\]

Therefore, the graph with a feasible flow is shown in Fig. 6. The found feasible flow \((30,5,6)\) has minimum cost \((18,3,3) \times ((70,10,10) + (100,20,17) + (80,15,15)) + (12,1.5,2) \times ((60,10,9) + (50,9,8)) = (5820,20,17)\) conventional units.

Turning to dynamic graph \(\tilde{G}\) from expanded static graph \(\tilde{G}_p\), we come to a conclusion that the given flow value for 3 time periods is equal to the flow, leaving from the “node-time” pairs \((x_1,0)\) and \((x_1,1)\) and entering the “node-time” pair \((x_6,3)\), i.e., \((30,5,6)\) flow units, which are defined by a path \(x_1 \rightarrow x_4 \rightarrow x_3 \rightarrow x_6\), which departs at \(\theta = 0\) and arrives at the sink at \(\theta = 3\) and by a path \(x_1 \rightarrow x_2 \rightarrow x_6\), which departs at \(\theta = 1\) and arrives at the sink \(\theta = 3\).

V. CONCLUSION

This article examines the task of minimum cost flow finding in a dynamic graph. The distinguishing feature of the problem lies in the fuzzy nature of network parameters. The relevance of this task is that the time factor and the tendency of the flow bounds, costs and transit times change over time, when finding the minimum cost flow for the given number of time periods. The necessity of introducing the lower bounds is taken into account due to the complex nature of the network.

ACKNOWLEDGMENTS

The research has been supported by the Russian Research Project No. 11-01-00011a.

REFERENCES

[8] S. Pallottino and M.G. Scutella, Shortest path algorithms in transportation models: classical and innovative aspects. In Equilibrium
Aleksandrs Božeņuks. Евгения Герасименко. Минимальная оценка мониторинга алгоритма определения стоимостных параметров в нечетких динамических сетях

Существует задача определения параметров транспортной сети, которые влияют на стоимость движения по сети. В данной статье рассматривается задача нахождения потока минимальной стоимости в нечеткой динамической транспортной сети с учетом нижних границ потоков, заданных на дугах графа. В литературе по потокам встречаются постановки задач на динамических графах, но они не учитывают нечеткий характер параметров транспортной сети, а также зависимость пропускной способности, стоимостей перевозок и параметров времени от момента отправления потока. Особенность постановки задачи в том, что параметры транспортной сети, такие как нижние и верхние границы потока и стоимости, задаются в нечетком виде, поскольку на эти параметры влияют факторы окружающей среды, погодные условия, ветра и т.д. Также данная постановка задачи предполагает зависимость параметров транспортной сети от времени отправления потока, что позволяет рассчитывать стоимость движения на основе точной динамической модели и учета временных факторов.

Александр Боженик, Евгения Герасименко. Алгоритм мониторинга минимальной стоимости в нечетких динамических сетях.

Information Technology and Management Science

2013 / 16

