A characterization of
hypercyclically embedded subgroups
using cover-avoidance property

Ning Su, Yanming Wang and Yangming Li

Communicated by Robert M. Guralnick

Abstract. A normal subgroup K of a finite group G is said to be hypercyclically embedded in G if every chief factor of G below K is cyclic. A subgroup H has the cover-avoidance property in G if H either covers or avoids every chief factor of G. In this paper we connect these two concepts and give a new characterization of normal hypercyclically embedded subgroups. Our main result is that a normal subgroup K is hypercyclically embedded in G if and only if the members of a certain class of subgroups of K have the cover-avoidance property in G.

1 Introduction

All groups considered in this paper are finite. We use standard notions and notation, as in [3]. The letter G always denotes a finite group, $|G|$ the order of G, $\pi(G)$ the set of all primes dividing $|G|$, G_p a Sylow p-subgroup of G for any prime $p \in \pi(G)$. The symbol \mathcal{U} denotes the class of all supersoluble groups.

A normal subgroup K is said to be hypercyclically embedded in G if every chief factor of G below K is cyclic, see [15, p.217]. The product of all normal hypercyclically embedded subgroups of G is denoted by $Z_{\mathcal{U}}(G)$ and is called the \mathcal{U}-hypercentre of G, see [3]. It is easy to see that $Z_{\mathcal{U}}(G)$ itself is hypercyclically embedded in G and any normal subgroup N of G is hypercyclically embedded in G if and only if $N \leq Z_{\mathcal{U}}(G)$. The concept of hypercyclical embedding is strongly connected to the formation of supersoluble groups and it has very good properties. For instance, G is supersoluble if and only if G is hypercyclically embedded in G itself. More generally, if G/N is a supersoluble group, then G is supersoluble if and only if N is hypercyclically embedded in G. In 2011, Skiba [16] gave a characterization of normal hypercyclically embedded subgroups related to

Project supported in part by NSFC (11171353 and 11271085), NSF of Guangdong Province (S2011010004447) and Special project for the subject build of High School of Guangdong Province (2012KJCX0081).

The corresponding author is Yanming Wang.
S-quasinormal subgroups. In this paper, we will give a new characterization by using the well-known cover-avoidance property.

Definition 1.1. Let L/K be a chief factor of G and H a subgroup of G. We say that

(i) H covers L/K if $L \leq HK$,

(ii) H avoids L/K if $L \cap H \leq K$,

(iii) H has the cover-avoidance property in G or H is a CAP-subgroup of G for short, if H either covers or avoids every chief factor of G.

As a generalization of the cover-avoidance property, Fan, Guo and Shum [5] defined semi-cover-avoidance as follows:

Definition 1.2 ([5]). A subgroup H of G is said to have the semi-cover-avoidance property in G if there exists a chief series of G,

$$1 = G_0 \leq G_1 \leq \cdots \leq G_n = G,$$

such that H either covers or avoids the chief factor G_{i+1}/G_i for each index $i \in \{0, 1, \ldots, n-1\}$. In this case H is called an SCAP-subgroup ([13]) of G or a partial CAP-subgroup ([2]) of G.

Lemma 1.3 ([14, Proposition 13]). A subgroup U is a CAP-subgroup of G if and only if U either covers or avoids each chief factor of G in the section U^G/U_G.

The cover-avoidance property of subgroups was first studied by Gaschütz in [7] to study solvable groups and later by Gillam [8] and Tomkinson [17].

Recently, some authors have used the cover-avoidance property to characterize the class of all supersoluble groups. For instances, Ezquerro [4] shows that G is supersoluble if and only if every maximal subgroup of every Sylow-subgroup has the cover-avoidance property. Later, from [10] we can see that if every minimal subgroup of G and every cyclic subgroup of order 4 have the semi-cover-avoidance property, then G is also supersoluble.

In this paper, we will focus on the relation between the cover-avoidance property and normal hypercyclically embedded subgroups. To reveal this relationship, we first present the following proposition:

Proposition 1.4. Suppose that N is a normal subgroup of G. If N is hypercyclically embedded in G, then every subgroup of N has the cover-avoidance property in G.

Proof. Let L be a subgroup of N and let H/K be a chief factor of G below N. First we show that L must either cover or avoid H/K. From the definition of N be-
ing hypercyclically embedded in G, we know that $|H/K| = p$ for some prime P. Since H/K is a minimal subgroup of G/K, it is easy to see that either

$$H/K \leq LK/K \quad \text{or} \quad H/K \cap LK/K = 1,$$

that is, L either covers or avoids H/K. Hence L either avoids or covers every chief factor in the section $N/1$. It is obvious that $L^G \leq N$ and $L_G \geq 1$. By applying Lemma 1.3 to the subgroup L, we see that L is a CAP-subgroup of G.

It is natural to ask whether the converse of Proposition 1.4 is true. That is, if every subgroup of a normal subgroup N has the cover-avoidance property in G, is N necessarily hypercyclically embedded in G? We will see that the answer is yes. In fact, the main object of this paper is to show that instead of requiring that all subgroups are CAP-subgroups of G, one only needs to require that certain classes of subgroups of N enjoy the cover-avoidance property in order to obtain that N is hypercyclically embedded in G.

We will prove the following main theorem and give some applications.

Main Theorem. Let L be a normal subgroup of G. Then $L \leq Z_u(G)$ if and only if there exists a normal subgroup E of G contained in L such that $F^*(L) \leq E$ and E satisfies the following properties: for every non-cyclic Sylow p-subgroup E_p of E, all subgroups of E_p with a fixed order d_p ($1 < d_p < E_p$, $d_p \mid |E_p|$) and all cyclic groups of E_p with order 4 (if $d_p = 2$ and E_2 is non-abelian) have the cover-avoidance property in G.

2 Preliminaries

The following lemma is evident.

Lemma 2.1. Let A, B and N be normal subgroups of G with $N \leq A$.

1. If A is hypercyclically embedded in G, then N is hypercyclically embedded in G.

2. If A/N is hypercyclically embedded in G/N and N is hypercyclically embedded in G, then A is hypercyclically embedded in G.

3. If A is a cyclic group, then A is hypercyclically embedded in G.

Denote by $\mathcal{A}(p-1)$ the formation of all abelian groups of exponent divisible by $p-1$.

Lemma 2.2 ([18, Theorem 1.4]). Let H/K be a chief factor of G and p be a prime divisor of $|H/K|$. Then $|H/K| = p$ if and only if $G/C_G(H/K) \in \mathcal{A}(p-1)$.

Unauthenticated
Download Date | 3/8/19 12:53 AM
Let \(f \) be a formation function and \(N \) be a normal subgroup of \(G \). We say that \(G \) acts \(f \)-centrally on \(N \) if \(G/C_G(H/K) \in f(p) \) for every chief factor \(H/K \) of \(G \) below \(N \) and every prime \(p \) dividing \(|H/K|\), see [3, p. 387, Definitions 6.2]. Define a formation function \(f_U(p) \) by setting \(f_U(p) = A(p-1) \) for all prime \(p \). From Lemma 2.2 we can prove without difficulty that \(N \) is hypercyclically embedded in \(G \) if and only if \(G \) acts \(f_U \)-centrally on \(N \). By applying [3, p. 388, Theorem 6.7], we get the following useful result:

Lemma 2.3. Let \(K \) be a normal subgroup of \(G \). Then \(K \leq Z_U(G) \) if and only if \(K/\Phi(K) \leq Z_U(G/\Phi(K)) \).

Lemma 2.4 ([14, Proposition 10]). Let \(S \) be a CAP-subgroup of \(G \) and \(N \) be a normal subgroup of \(G \). Then \(SN/N \) is a CAP-subgroup of \(G/N \).

Lemma 2.5 ([12, Lemma 2.3]). Every minimal normal subgroup of \(G \) is a minimal CAP-subgroup of \(G \).

Lemma 2.6 ([10, Lemma 2.5]). If \(S \) be a SCAP subgroup of \(G \) and \(S \leq K \leq G \), then \(S \) is a SCAP-subgroup of \(K \).

Lemma 2.7 ([10, Theorem 3.8]). Let \(G \) be a finite group and \(p \) be the minimal prime divisor of \(|G|\). If every cyclic subgroup with order \(p \) (or 4 if \(p = 2 \)) is a SCAP-subgroup of \(G \), then \(G \) is \(p \)-nilpotent.

Lemma 2.8. Let \(G \) be a group and \(P \) be a normal \(p \)-subgroup of \(G \). Suppose that every cyclic subgroup of \(P \) of order \(p \) (or 4 if \(p = 2 \) and \(P \) is non-abelian) is a CAP-subgroup of \(G \). Then \(P \leq Z_U(G) \).

Proof. Suppose that this is false and \((G, P)\) is a counter-example with \(|G||P|\) minimal. Let \(P/K \) be a chief factor of \(G \). Obviously \((G, K)\) satisfies the hypothesis. By the minimal choice of \((G, P)\), we know that \(K \leq Z_U(G) \) and \(P/K \) is not a cyclic group. If there is some element \(x \in P\setminus K \) with \(o(x) = p \) or \(o(x) = 4 \) (if \(p = 2 \) and \(P \) is non-abelian), then \(\langle x \rangle \) is a CAP-subgroup of \(G \) by the hypotheses. By Lemma 2.4 and Lemma 2.5, we have \(P/K = \langle x \rangle K/K \), a contradiction. Therefore all cyclic subgroups of order \(p \) or order 4 (if \(p = 2 \) and \(P \) is non-abelian) of \(P \) are contained in \(K \). Suppose that we have a chief series of \(G \) below \(P \) as follows:

\[
1 = U_0 \leq U_1 \leq \cdots \leq U_n = K \leq P.
\]

Then \(|U_i/U_{i-1}| = p \) for \(i \in \{1, 2, \ldots, n\} \) since \(K \leq Z_U(G) \). Thus

\[
G/C_G(U_i/U_{i-1}) \in A(p-1)
\]
by Lemma 2.2. Write

\[X = \bigcap_{i=1}^{n} C_G(U_i/U_{i-1}). \]

Then \(G/X \in \mathcal{A}(p - 1) \) since \(\mathcal{A}(p - 1) \) is a formation. Let \(Q \) be a \(q \)-subgroup of \(X \) (\(q \neq p \)). Then \(Q \) centralizes \(K \) by [9, p. 178, Theorem 3.2] and thus \(Q \) centralizes all elements of \(P \) of order \(p \) and order 4 (if \(p = 2 \) and \(P \) is non-abelian). Then \(Q \) centralizes \(P \) by [6, Theorem 2.4]. Thus \(X/C_X(P/K) \) is a \(p \)-group. Then \(XC_G(P/K)/C_G(P/K) \) is a normal \(p \)-subgroup of \(G/C_G(P/K) \). Hence

\[XC_G(P/K)/C_G(P/K) = 1 \]

by [18, Corollary 6.4, p. 221]. So \(X \leq C_G(P/K) \). We have

\[G/C_G(P/K) \in \mathcal{A}(p - 1) \]

since \(G/X \in \mathcal{A}(p - 1) \). Again by Lemma 2.2, we know that \(|P/K| = p \), a final contradiction.

\[\square \]

Lemma 2.9 ([11, IV, Satz 2.8]). Let \(p \) be the minimal prime divisor of \(|G| \). If the Sylow \(p \)-subgroups of \(G \) are cyclic, then the \(G \) is a \(p \)-nilpotent group.

Lemma 2.10 ([16, Theorem C]). Let \(E \) be a normal subgroup of \(G \). If \(F^*(E) \) is hypercyclically embedded in \(G \), then \(E \) is hypercyclically embedded in \(G \).

3 Proof of the main result

In order to present the proof of our main result in a more compact way, we first prove the following lemmas. They are used in the inductive arguments of the proof of the main theorem.

Lemma 3.1. Let \(E \) be a normal subgroup of \(G \). Let \(E_p \) be a Sylow \(p \)-subgroup of \(E \). Let \(N \) be a minimal normal subgroup of \(G \) contained in \(E \) such that \(p \) divides \(|N| \). If every subgroup of \(E_p \) with order \(d_p \) (\(1 < d_p < |E_p|, d_p \mid |E_p| \)) is a CAP-subgroup in \(G \), then \(N \) is a \(p \)-group and either \(|N| = d_p = p \) or \(d_p > |N| \).

Proof. Suppose that \(N \) is not a \(p \)-group. Take \(x \in N \cap E_p \) with \(o(x) = p \), and choose a subgroup \(K \) contained in \(E_p \) with order \(d_p \) and \(\langle x \rangle \subseteq K \). From the hypothesis we know that \(K \) is a CAP-subgroup of \(G \). It is clear that \(\langle x \rangle \in K \cap N \neq 1 \), and \(N \not\subseteq K \) because \(N \) is not a \(p \)-group. Therefore \(K \) can neither cover nor avoid the chief factor \(N/1 \) of \(G \). This contradiction shows that \(N \) must be a \(p \)-group.

By Lemma 2.5, it is easy to see that \(d_p \geq |N| \). To prove Lemma 3.1, we only need to show that if \(d_p = |N| \), then \(d_p = p \). Suppose that this is not true and \(|N| = d_p > p \). Since \(|E_p| > |d_p| = |N| \), we can choose a subgroup \(M \) of \(E_p \).
such that N is a maximal subgroup of M. Since N is not cyclic, M is not cyclic either, hence we can choose a maximal subgroup K of M other than N. It is clear that $M = NK$ and $|K| = |N| = d_p$, thus K is a CAP-subgroup of G by hypothesis. If $N \cap K = 1$, then $|M| = |N|^2$ and $|N| = |N|^2/|N| = |M|/|N| = p$, a contradiction to our assumption; therefore $N \cap K \neq 1$. But $N \notin K$ since N and K are two different maximal subgroups of M. Consequently K can neither cover nor avoid the chief factor $N/1$ of G. This contradiction shows $|N| = d_p = p$. □

Lemma 3.2. Let E be a normal subgroup of G and E_p be a Sylow p-subgroup of E. Let N be a minimal normal subgroup of G contained in E such that $p \mid |N|$. If every subgroup of E_p with order d_p ($1 < d_p < |E_p|$, $d_p \mid |E_p|$) is a CAP-subgroup of G and $N \notin \Phi(E)$, then $|N| = p$.

Proof. From Lemma 3.1 we already know that N is a p-group. Suppose that this lemma is not true and assume $|N| > p$. Since $N \notin \Phi(E)$, we can choose a maximal subgroup M of E such that $E = NM$. Hence

$$E_p = E_p \cap NM = N(E_p \cap M).$$

Clearly $(E_p \cap M) < E_p$ since N is not contained in M, so we can choose a maximal subgroup K of E_p such that $E_p \cap M \leq K$. Note that now $E_p = NK$. If $N \cap K = 1$, then by a simple calculation we know that $|N| = p$, which contradicts our assumption. Hence $N \cap K > 1$. But $N \cap K < N$ since N is not contained in K. Clearly $|N| \leq d_p \leq |K|$, hence we can choose a subgroup H with order d_p such that $1 < N \cap K < H \leq K$. As in Lemma 3.1, it is easy to verify that H can neither cover nor avoid the chief factor $N/1$, a contradiction to the hypothesis. □

Lemma 3.3. Let E be a normal subgroup of G and E_2 be a Sylow 2-group of E. Let N be a minimal normal subgroup of G contained in E such that $2 \mid |N|$. If every subgroup of E_2 of order 4 is a CAP-subgroup of G, then every subgroup of E_2 of order 2 is also a CAP-subgroup of G.

Proof. By Lemma 3.1, N is a 2-subgroup. As $d_2 = 4 > 2$, we know that $d_2 > |N|$ by Lemma 3.1 and thus $|N| = 2$. Take a subgroup A of E_2 of order 2. We are now going to show that A is a CAP-subgroup of G. If $A = N$, then A is obviously a CAP-subgroup of G. Hence we may assume that $A \cap N = 1$. Write $B = A \times N$. Then B is a subgroup of order 4, thus B is a CAP-subgroup of G by hypothesis. Let H/K be a chief factor of G. If B avoids H/K, say, $B \cap H = B \cap K$, then $A \cap H = A \cap (B \cap H) = A \cap (B \cap K) = (A \cap B) \cap K = A \cap K$, which means that A avoids H/K.

If B covers H/K, we show that in this case we will have $|H/K| = 2$. Suppose that $|H/K| > 2$, by the fact that B covers H/K we have that $H/K \leq BK/K$ and
thus $|H/K|$ is a divisor of $|BK/K|$. But $|B| = 4$ and $|H/K| > 2$, so

$$|H/K| = |BK/K| = 4$$

and hence $H/K = BK/K$. If $N \leq K$, then

$$|H/K| = |BK/K| = |(A \times N)K/K| = |AK/K| \leq 2,$$

a contradiction. Thus $N \cap K = 1$ and NK/K is a normal subgroup of order 2 strictly contained in H/K, contrary to the fact that H/K is a chief factor of G. This contradiction shows that $|H/K| = 2$.

Using similar arguments to the ones in the proof of Proposition 1.4, we know that in this case every subgroup of G must either cover or avoid H/K and so does A. The arbitrary choice of H/K shows that A is a CAP-subgroup of G.

The following proposition is useful in the proof of our main theorem. Also, the proposition itself is of independent interest. Suppose that p is the smallest prime divisor of $|G|$. If we take the normal subgroup E in the following proposition to be G itself, then we conclude that G is p-nilpotent if and only if the members of a certain class of subgroups contained in G_p have the cover-avoidance property in G.

Proposition 3.4. Let E be a normal subgroup of G, p be the minimal prime dividing E, and E_p be a Sylow p-subgroup of E. If either E is cyclic or every subgroup of E_p of order d_p ($1 < d_p < |E_p|$, $d_p \mid |E_p|$) and every cyclic subgroup of E_p with order 4 (if $d_p = 2$ and E_2 is non-abelian) has the cover-avoidance property, then E is p-nilpotent.

Proof. Suppose this proposition is not true and let (G, E) be a counter-example for which $|G||E|$ is minimal. If E_p is cyclic, then E is p-nilpotent by Lemma 2.9, hence we may assume that E_p is not cyclic. Let N be a minimal normal subgroup of G contained in E; then by our hypothesis and Lemma 2.5, we know that $N < E$.

Step 1. $O_{p'}(E) = 1$.

If $O_{p'}(E) \neq 1$, then obviously $(G/O_{p'}(E), E/O_{p'}(E))$ still satisfies the hypothesis of this proposition, hence $E/O_{p'}(E)$ is p-nilpotent by the minimal of $|G||E|$, which implies E is p-nilpotent, a contradiction to the choice of (G, E).

Step 2. N is a 2-group.

This follows from Step 1 and Lemma 3.1.

Step 3. If $d_p > p$ (if $p \neq 2$) or $d_p > 4$ (if $p = 2$), then E/N is p-nilpotent.

We show that in this case $(G/N, E/N)$ still satisfies the hypothesis of the proposition, thus E/N is p-nilpotent by the minimal choice of (G, E). Since $d_p > p$, by Lemma 3.1, we know that $d_p > |N|$.

Unauthenticated
Download Date | 3/8/19 12:53 AM
If \(p \neq 2 \) or \(p = 2 \) and \(d_p/|N| \geq 4 \) or \(p = 2 \) and \(E_p/N \) is abelian, let
\[
d'_p = \frac{d_p}{|N|};
\]
then it is easy to verify that every subgroup of \(E_p/N \) of order \(d'_p \) (note that in this case if \(p = 2 \) and \(E_p/N \) is non-abelian, then \(d'_p \geq 4 \)) is a CAP-subgroup of \(G/N \).

Hence the hypothesis still holds for \((G/N, E/N)\) in this case.

\begin{itemize}
\item If \(p = 2 \), \(d_p/|N| = 2 \) and \(E_p/N \) is non-abelian, take a cyclic subgroup \(K = N \) of \(E_p/N \) of order 4. Since \(d_p > 4 \) and \(d_p/|N| = 2 \), we have \(|N| > 2 \). Hence \(N \) is not a cyclic subgroup and neither is \(K \). If \(N \leq \Phi(K) \), then \(K \) is a cyclic group since \(K/N \) is a cyclic group, a contradiction. Thus \(N \not\subset \Phi(K) \), and we can find a maximal subgroup \(M \) of \(K \) such that \(K = MN \).
\end{itemize}

Hence the hypothesis still holds for \((G/N, E/N)\) in this case.

Step 4. Final contradiction.

First we will show that \(d_p = p \) or \(d_p = 4 \). If not, then from Step 3 we know that \(E/N \) is \(p \)-nilpotent and thus \(N \not\subset \Phi(E) \) since \(E \) is not \(p \)-nilpotent. But then by Lemma 3.2, we know \(|N| = p \) at this time, which implies \(N \leq Z(E) \) since \(p \) is the smallest divisor of \(|E| \). Again, this will lead to \(E \) being \(p \)-nilpotent, contradicting the choice of \((G, E)\).

By Lemma 3.3, we know that if \(d_p = 4 \), then every subgroup of \(E_2 \) of order 2 or 4 is a CAP-subgroup of \(G \). Hence every minimal subgroup of \(E \) and every cyclic subgroup of \(E \) with order 4 (if \(d_p = 2 \) and \(E_2 \) is non-abelian) of \(E_p \) is a CAP-subgroup of \(G \), and so it is an SCAP-subgroup of \(E \) by Lemma 2.3. From Lemma 2.7, \(E \) is \(p \)-nilpotent, the final contradiction.

\[\square \]

Proof of the Main Theorem. The necessity has already been proved in Proposition 1.4. In order to prove that \(L \leq Z_{\mathcal{U}}(G) \), we will first show that \(E \leq Z_{\mathcal{U}}(G) \) under the hypothesis of the Main Theorem. Suppose that this is not true and consider a counter-example \((G, E)\) for which \(|G||E| \) is smallest. Let \(p \) be the minimal prime divisor of \(E \). Let \(N \) be a minimal normal subgroup of \(G \) contained in \(E \). We will get a contradiction in the following steps:

Step 1. \(E \) is a \(p \)-group.

By Proposition 3.4, we know that \(E \) is \(p \)-nilpotent. Hence \(O_{p'}(E) \) is the Hall \(p' \)-subgroup of \(E \). Therefore the hypothesis holds for \((G, O_{p'}(E))\). Then, by Lemma 2.4, the hypothesis also holds for \((G/O_{p'}(E), E/O_{p'}(E))\). Consequently, if \(O_{p'}(E) \neq 1 \),
then, by the minimal choice of \((G, E)\), we have that

\[E/O_p'(E) \leq Z_\mathcal{U}(G/O_p'(E)) \quad \text{and} \quad O_p'(E) \leq Z_\mathcal{U}(G). \]

By Lemma 2.1 (2), we have that \(E \leq Z_\mathcal{U}(G)\), a contradiction.

Step 2. \(E\) is not cyclic and \(N < E\).

If \(E\) is cyclic, then \(E \leq Z_\mathcal{U}(G)\) by Lemma 2.1 (3), contrary to the choice of \((G, E)\). Thus \(E\) is not cyclic by the hypothesis. Therefore some subgroup strictly contained in \(E\) is a CAP-subgroup in \(G\). By Lemma 2.5, \(E\) is not a minimal normal subgroup of \(G\), so \(N < E\).

Step 3. If \(d_p > p\) (if \(p \neq 2\)) or \(d_p > 4\) (if \(p = 2\)), then \(E/N \leq Z_\mathcal{U}(G/N)\).

Using the same argument as in the proof of Step 3 of Proposition 3.4, we know that \((G/N, E/N)\) satisfies our hypothesis under the given circumstances, hence \(E/N \leq Z_\mathcal{U}(G/N)\) by the minimal choice of \((G, E)\).

Step 4. Final contradiction.

First suppose that \(d_p > p\) (if \(p \neq 2\)) or \(d_p > 4\) (if \(p = 2\)). By Step 3, we have that

\[E/N \leq Z_\mathcal{U}(G/N). \]

If \(N \leq \Phi(E)\), then

\[E \leq Z_\mathcal{U}(G) \]

by Lemma 2.3. If \(N \not\leq \Phi(E)\), then \(|N| = p\) by Lemma 3.2; thus \(N \leq Z_\mathcal{U}(G)\) by Lemma 2.1 (3) and \(E \leq Z_\mathcal{U}(G)\) by Lemma 2.1 (2). These contradictions show that \(d_p = p\) or \(d_p = 4\).

By Lemma 3.3, every minimal subgroup and every cyclic subgroup with order 4 (if \(d_p = 2\) and \(E_2\) is non-abelian) of \(E\) is a CAP-subgroup of \(G\). By Step 1 and Lemma 2.8, we know that \(E \leq Z_\mathcal{U}(G)\), a final contradiction.

Now we will show that \(L \leq Z_\mathcal{U}(G)\). Note that \(F^*(L) \leq E\), by Lemma 2.1 (1) and \(E \leq Z_\mathcal{U}(G)\) we have

\[F^*(L) \leq Z_\mathcal{U}(G). \]

Hence \(L \leq Z_\mathcal{U}(G)\) by Lemma 2.10.

Remark. In the Main Theorem, the cover-avoidance property cannot be replaced by the semi-cover-avoidance property. For instance, \(G\) is not necessarily a supersoluble group even if for every non-cyclic Sylow \(p\)-subgroup \(G_p\) of \(G\), all subgroups of \(G_p\) with a fixed order \(d_p\) (\(1 < d_p < |G_p|\), \(d_p \mid |G_p|\)) and all cyclic subgroups of \(G_p\) with order 4 (if \(d_p = 2\) and \(G_2\) is non-abelian) have the semi-cover-avoidance property in \(G\). For an example, we refer the reader to [1, Example 1.2].
4 Some applications

The first three corollaries below follow directly from our main theorem.

Corollary 4.1. A group G is supersoluble if and only if for every non-cyclic Sylow p-subgroup E_p of G, all subgroups of G_p with a fixed order d_p ($1 < d_p < |G_p|$, $d_p \mid |G_p|$) and all cyclic subgroups of G_p with order 4 (if $d_p = 2$ and G_2 is non-abelian) have the cover-avoidance property in G.

Corollary 4.2. Let L be a normal subgroup of G. Then $L \leq Z\mathcal{U}(G)$ if and only if for every non-cyclic Sylow p-subgroup L_p of L, all subgroups of L_p with a fixed order d_p ($1 < d_p < |L_p|$, $d_p \mid |L_p|$) and all cyclic subgroups of L_p with order 4 (if $d_p = 2$ and L_2 is non-abelian) have the cover-avoidance property.

Corollary 4.3. Let L be a normal subgroup of G. Then $L \leq Z\mathcal{U}(G)$ if and only if for every non-cyclic Sylow p-subgroup $F^*(L)_p$ of $F^*(L)$, all subgroups of $F^*(L)_p$ with a fixed order d_p ($1 < d_p < |F^*(L)_p|$, $d_p \mid |F^*(L)_p|$) and all cyclic subgroups of $F^*(L)_p$ with order 4 (if $d_p = 2$ and $F^*(L)_2$ is non-abelian) have the cover-avoidance property.

Corollary 4.4. Let \mathcal{F} be a saturated formation containing the class of all supersoluble groups \mathcal{U} and let L be a normal subgroup of G such that $G/L \in \mathcal{F}$. If for every non-cyclic Sylow p-subgroup L_p of L, all subgroups of L_p with a fixed order d_p ($1 < d_p < |L_p|$, $d_p \mid |L_p|$) and all cyclic subgroups of L_p with order 4 (if $d_p = 2$ and L_2 is non-abelian) have the cover-avoidance property, then $G \in \mathcal{F}$. If $\mathcal{F} = \mathcal{U}$, then the converse is also true.

Proof. Since \mathcal{F} is a saturated formation, there exits a unique full and integrated formation function h such that $\mathcal{F} = LF(h)$ (see [3, IV, Theorem 3.7]). Since $\mathcal{U} \subseteq \mathcal{F}$, we have $f_\mathcal{U}(p) \subseteq h(p)$ for all primes p ([3, IV, Proposition 3.11]). Hence $Z\mathcal{U}(G) \leq Z\mathcal{F}(G)$. We already know that $L \leq Z\mathcal{U}(G)$ in our Main Theorem, thus

$$L \leq Z\mathcal{U}(G) \leq Z\mathcal{F}(G).$$

But $G/L \in \mathcal{F}$ by our assumption and consequently $G \in \mathcal{F}$.

If $G \in \mathcal{U}$, then every subgroup of G has the cover-avoidance property. Hence the converse is also true. \square

Corollary 4.5. Let \mathcal{F} be a saturated formation containing the class of all supersoluble groups \mathcal{U} and let L be a normal subgroup of G such that $G/L \in \mathcal{F}$. If for every non-cyclic Sylow p-subgroup $F^*(L)_p$ of $F^*(L)$, all subgroups of $F^*(L)_p$ with a fixed order d_p ($1 < d_p < |F^*(L)_p|$, $d_p \mid |F^*(L)_p|$) and all cyclic sub-
groups of $F^*(L)_p$ with order 4 (if $d_p = 2$ and $F^*(L)_2$ is non-abelian) have the cover-avoidance property, then $G \in \mathcal{F}$. Furthermore, if $\mathcal{F} = \mathcal{U}$, then the converse is also true.

Proof. The proof is similar to that of Corollary 4.4.

Corollary 4.6. Let E be a normal subgroup of G. Let p be the smallest prime divisor of $|E|$ and assume that G/E is p-supersoluble. Let E_p be a Sylow p-subgroup of E. If either E_p is cyclic or every subgroup of E_p of order d_p and every cyclic subgroup of E_p with order 4 (if $p = 2$ and $d_p = 2$) have the cover-avoidance property, then G is p-supersoluble. In particular, if p is also the smallest prime divisor of $|G|$, then G is p-nilpotent.

Proof. Suppose that this corollary is not true and let (G, E) be a counter-example for which $|G||E|$ is minimal. Using a similar argument to the one in the proof of Step 1 of Proposition 3.4, we have $O_p^*(E) = 1$. This implies that E is a p-group since E is p-nilpotent by Proposition 3.4. Because E is a p-group, it follows that E satisfies the hypothesis of our Main Theorem. As a consequence, every chief factor of G below E has order p. But G/E is p-supersoluble, thus G is p-supersoluble, a contradiction.

Acknowledgments. The authors would like to thank the referee for helpful suggestions.

Bibliography

Received February 8, 2012; revised September 25, 2012.

Author information

Ning Su, School of Mathematics, Sun Yatsen University, Guangzhou, 510275, P. R. China. E-mail: mc04sn@mail2.sysu.edu.cn

Yanming Wang, Lingnan College, Sun Yatsen University, Guangzhou, 510275, P. R. China. E-mail: stswym@mail.sysu.edu.cn

Yangming Li, Department of Mathematics, Guangdong Second Normal College, Guangzhou, 510310, P. R. China. E-mail: liyangming@gdei.edu.cn