Corrigendum

Mourad Choulli*

An inverse problem in corrosion detection: Stability estimates

https://doi.org/10.1515/jiip-2017-0030
Received March 28, 2017; revised October 2, 2017; accepted November 20, 2017

Abstract: In this note we correct the proof of [2, Theorem 2.1].

Keywords: Inverse coefficient problem, corrosion detection, logarithmic stability estimate

MSC 2010: 35R30

Unless otherwise stated, Ω is a C^∞ bounded domain of \mathbb{R}^2 so that its boundary Γ is the union of two disjoint closed subsets with nonempty interior, $\Gamma = \Gamma_1 \cup \Gamma_2$.

We considered in [2] the stability issue for the problem of determining the boundary coefficient q, appearing in the BVP

$$\begin{cases}
\Delta u = 0 & \text{in } \Omega, \\
\partial_\nu u + qu = 0 & \text{on } \Gamma_1, \\
\partial_\nu u = f & \text{on } \Gamma_2,
\end{cases} \quad (1)$$

from the boundary measurement $u|_{\gamma_2}$, where γ_2 is an open subset of Γ_2.

Our proof of [2, Theorem 2.1] is partially incorrect. We rectify here this proof. We precisely establish a stability estimate of logarithmic type for the inverse problem described above. Contrary to the result announced in [2, Theorem 2.1], we do not know whether Lipschitz stability, even around a particular unknown coefficient, is true. Note that Lipschitz stability around an arbitrary unknown boundary coefficient is false in general as the following counter-example shows. Let $\Omega = \{ \frac{1}{2} < |x| < 1 \}$, $\Gamma_1 = \{|x| = \frac{1}{2}\}$, $\Gamma_2 = \{|x| = 1\}$ and let, in polar coordinates (r, θ),

$$u = 1 + \ln r,$$

$$u_k = u + 2^{-k}k^{-2}(r^k + r^{-k}) \cos(k\theta), \quad k \geq 1.$$

By straightforward computations we check that u and u_k are the solutions of the BVP (1) respectively when

$$q = \frac{2}{1 - \ln 2},$$

$$q_k = \frac{2 + k^{-1}(2^{-2k+1} - 2) \sin(k\theta)}{1 - \ln 2 + k^{-2}(2^{-2n} + 1) \sin(k\theta)}, \quad k \geq 1,$$

and $f = 1$.

By simple calculations, we get $\|u - u_k\|_{L^2(\Gamma_2)} = O(2^{-k}k^{-2})$, while $\|q - q_k\|_{L^2(\Gamma_1)} = O(k^{-1})$.

To our knowledge, the only case where Lipschitz stability holds is when q is assumed to be a priori piecewise constant. We refer to [6] for more details.

*Corresponding author: Mourad Choulli, IECL, UMR CNRS 7502, Université de Lorraine, Boulevard des Aiguillettes, BP 70239, 54506 Vandoeuvre, Les Nancy Cedex – Ile du Saulcy – 57 045 Metz Cedex 01, France, e-mail: mourad.choulli@univ-lorraine.fr
Throughout, the unit ball of a Banach space X is denoted by B_X and
\[
L^p_K(D) = \{ h \in L^p(D) : \text{supp}(h) \subset K \}, \quad 1 \leq p \leq \infty.
\]
The characteristic function of a set A is denoted by χ_A.

Fix $q_0 \in L^\infty(\Gamma_1)$ nonnegative and nonidentically equal to zero and let $f \in L^2(\Gamma_2)$ be nonidentically equal to zero. Denote by $u_0 \in H^{3/2}(\Omega)$ the solution of the BVP
\[
\begin{aligned}
\Delta u &= 0 \quad \text{in } \Omega, \\
\partial_\nu u + q_0 u &= 0 \quad \text{on } \Gamma_1, \\
\partial_\nu u &= f \quad \text{on } \Gamma_2.
\end{aligned}
\]

As it is observed in [2],
\[
\Gamma_0 = \{ x \in \Gamma_1 : u_0(x) \neq 0 \}
\]
is an open dense subset of Γ_1.

For $(\varphi_1, \varphi_2) \in L^2(\Gamma_1) \oplus L^2(\Gamma_2)$, define $L(\varphi_1, \varphi_2) := y$, where $y \in H^{3/2}(\Omega)$ is the unique weak solution of the BVP
\[
\begin{aligned}
\Delta y &= 0 \quad \text{in } \Omega, \\
\partial_\nu y + q_0 y &= \varphi_1 \quad \text{on } \Gamma_1, \\
\partial_\nu y &= \varphi_2 \quad \text{on } \Gamma_2.
\end{aligned}
\]

An application of Green’s formula leads to
\[
\int_\Omega |\nabla y|^2 \, dx + \int_{\Gamma_1} q_0 y^2 \, d\sigma = \int_{\Gamma_1} \varphi_1 y \, d\sigma + \int_{\Gamma_2} \varphi_2 y \, d\sigma \leq \| (\varphi_1, \varphi_2) \|_{L^2(\Gamma_1) \oplus L^2(\Gamma_2)} \| y \|_{H^{1}(\Omega)}.
\]

Using that
\[
h \to \left(\int_\Omega |\nabla h|^2 \, dx + \int_{\Gamma_1} q_0 h^2 \, d\sigma \right)^{1/2}
\]
defines an equivalent norm on $H^{1}(\Omega)$, we derive from (3) that
\[
\| y \|_{H^{1}(\Omega)} \leq \kappa_0 \|(\varphi_1, \varphi_2)\|_{L^2(\Gamma_1) \oplus L^2(\Gamma_2)}
\]
for some constant κ_0 depending only on Ω, q_0 and f.

As y is also the solution of the BVP
\[
\begin{aligned}
\Delta y &= 0 \quad \text{in } \Omega, \\
\partial_\nu y + (1 - q_0) y + \varphi_1 &= 0 \quad \text{on } \Gamma_1, \\
\partial_\nu y &= \varphi_2 \quad \text{on } \Gamma_2,
\end{aligned}
\]
we get from the usual a priori estimates for nonhomogenous BVPs (see [5]) that there exists a constant κ_1, depending only on Ω, q_0 and f, so that
\[
\| y \|_{H^{3/2}(\Omega)} \leq \kappa_1 \|(\varphi_1, \varphi_2)\|_{L^2(\Gamma_1) \oplus L^2(\Gamma_2)}.
\]
In other words, we have proved that $L \in \mathcal{P}(L^2(\Gamma_1) \oplus L^2(\Gamma_2), H^{3/2}(\Omega))$ and
\[
\| L \| := \| L \|_{\mathcal{P}(L^2(\Gamma_1) \oplus L^2(\Gamma_2), H^{3/2}(\Omega))} \leq \kappa_1.
\]

For $q \in L^2(\Gamma_1)$, define the operator H_q as follows:
\[
H_q : H^{3/2}(\Omega) \to H^{3/2}(\Omega), \quad H_q(u) = L(-qu|_{\Gamma_1}, 0).
\]

If κ is the norm of the trace operator
\[
h \in H^{3/2}(\Omega) \to h|_{\Gamma_1} \in C(\Gamma_1),
\]
then
\[\|H_q\|_{\mathcal{B}(H^{1/2}(\Omega))} \leq \kappa \|q\|_{L^2(\Gamma_1)}. \]
Whence, for any \(q \in \mathcal{U} = (2\kappa \|L\|)^{-1}B_{L^2(\Gamma)}, I - H_q \) is invertible and
\[\|(I - H_q)^{-1}\|_{\mathcal{B}(H^{1/2}(\Omega))} \leq 2, \quad q \in \mathcal{U}. \]

Define, for \(q \in \mathcal{U} \) and \((\varphi_1, \varphi_2) \in L^2(\Gamma_1) \otimes L^2(\Gamma_2)\),
\[u_q(\varphi_1, \varphi_2) = (I - H_q)^{-1}L(\varphi_1, \varphi_2). \]
In light of the identity
\[u_q(\varphi_1, \varphi_2) = L(-qu_{\Gamma_1} + \varphi_1, \varphi_2), \]
we derive that \(u_q(\varphi_1, \varphi_2) \in H^{3/2}(\Omega) \) is the solution of the BVP
\[
\begin{align*}
\Delta u &= 0 \quad \text{in} \ \Omega, \\
\partial_\nu u + (q_0 + q)u &= \varphi_1 \quad \text{on} \ \Gamma_1, \\
\partial_\nu u &= \varphi_2 \quad \text{on} \ \Gamma_2.
\end{align*}
\]
Note that according to (4),
\[\|u_q(\varphi_1, \varphi_2)\|_{H^{3/2}(\Omega)} \leq 2\kappa_1 \|\varphi_1, \varphi_2\|_{L^2(\Gamma_1) \otimes L^2(\Gamma_2)}. \]

Set \(u_q = u_q(0, f) \). That is, \(u_q \) is the solution of the BVP
\[
\begin{align*}
\Delta u &= 0 \quad \text{in} \ \Omega, \\
\partial_\nu u + (q_0 + q)u &= \varphi_1 \quad \text{on} \ \Gamma_1, \\
\partial_\nu u &= f \quad \text{on} \ \Gamma_2.
\end{align*}
\]
Observe that (5) yields
\[\|u_q\|_{H^{3/2}(\Omega)} \leq 2\kappa_1 \|\|_{L^2(\Gamma_2)}. \]

Let \(K \) be a compact subset of \(\Gamma_0 \) with nonempty interior so that \(\Gamma_1 \setminus K \neq \emptyset \). We can mimic the proof of [2, Proposition 2.1] to show that the mapping
\[\Phi : q \in \mathcal{U} \cap L^2_K(\Gamma_1) \mapsto \chi_{\Gamma_1}[\partial_\nu u_q]|K] \in L^2_K(\Gamma_1) \]
is continuously Fréchet differentiable and \(\Phi'(0) = N \). Here, for \(p \in L^2_K(\Gamma_1) \), \(Np = \chi_{\Gamma_1}[\partial_\nu v]|K] \), where \(v_p \) is the solution of the BVP
\[
\begin{align*}
\Delta v &= 0 \quad \text{in} \ \Omega, \\
\partial_\nu v + q_0 v &= -p \quad \text{on} \ \Gamma_1, \\
\partial_\nu v &= 0 \quad \text{on} \ \Gamma_2.
\end{align*}
\]
Similarly to the proof of [2, Lemma 2.1], we prove that \(N \) is an isomorphism. Therefore, by the Implicit Function Theorem, there exists \(\tilde{\mathcal{U}} \subset \mathcal{U} \) so that \(\Phi^{-1} \) is Lipschitz continuous on \(\tilde{\mathcal{V}} = \Phi(\tilde{\mathcal{U}} \cap L^2_K(\Gamma_1)) \) with Lipschitz constant less than or equal to
\[2\|N^{-1}\|. \]
That is,
\[\|q_1 - q_2\|_{L^2(\Gamma_1)} \leq 2\|N^{-1}\|\|\partial_\nu u_{q_1} - \partial_\nu u_{q_2}\|_{L^2(K)}, \quad q_1, q_2 \in \tilde{\mathcal{U}} \cap L^2_K(\Gamma_1). \]

Let \(k \) be a positive integer, \(s \in \mathbb{R}, 1 \leq r \leq \infty \) and consider the vector space
\[B_{s,r}(\mathbb{R}^k) := \{ w \in \mathcal{S}'(\mathbb{R}^k) : (1 + |\xi|^2)^{s/2} \hat{w} \in L^r(\mathbb{R}^k) \}, \]
where \(\mathcal{S}'(\mathbb{R}^k) \) is the space of tempered distributions on \(\mathbb{R}^k \) and \(\hat{w} \) is the Fourier transform of \(w \). Equipped with the norm
\[\|w\|_{B_{s,r}(\mathbb{R}^k)} := \|(1 + |\xi|^2)^{s/2} \hat{w}\|_{L^r(\mathbb{R}^k)}, \]
\(B_{s,r}(\mathbb{R}^k) \) is a Banach space. Note that \(B_{s,2}(\mathbb{R}^k) \) is merely the Sobolev space \(H^s(\mathbb{R}^k) \). Using local charts and a partition of unity, we construct \(B_{s,2}(\Gamma_1) \) from \(B_{s,2}(\mathbb{R}) \) similarly as \(H^s(\Gamma_1) \) is built from \(H^s(\mathbb{R}) \).
Fix $m > 0$. If $f \in H^{3/2}(\Gamma_2)$ and $q \in mB_{3/2}(\Gamma_1)$, then by [1, Theorem 2.3], $u_q \in H^3(\Omega)$ and
\[
\|u_q\|_{H^3(\Omega)} \leq C_0. \tag{7}
\]
Here and henceforth, C_0 is a constant depending only on Ω, f and m. In dimension two, $H^3(\Omega)$ is continuously embedded in $C^2(\Omega)$. Whence, estimate (7) entails
\[
\|u_q\|_{C^2(\Omega)} \leq C_0.
\]
Let
\[
\Psi(\rho) = |\ln \rho|^{1/2} + \rho, \quad \rho > 0,
\]
be extended by continuity at 0 by setting $\Psi(0) = 0$.

Let γ_2 be a nonempty open subset of Γ_2. According to [3, Proposition 2.7], there exists a constant $C > 0$, depending only on Ω, f, m and γ_2, so that
\[
\|\partial_\nu u_{q_1} - \partial_\nu u_{q_2}\|_{L^q(K)} \leq C\Psi(\|u_{q_1} - u_{q_2}\|_{H^3(\Omega)}). \tag{8}
\]
Set
\[
\mathcal{D}_m = mB_{3/2}(\Gamma_1) \cap \overline{\Omega} \cap L^2(\Gamma_1).
\]
Note that $\mathcal{D}_m \neq \emptyset$ if m is chosen sufficiently large.

We can now combine (6) and (8) in order to obtain
\[
\|q_1 - q_2\|_{L^2(\Gamma_1)} \leq C\Psi(\|u_{q_1} - u_{q_2}\|_{H^3(\Omega)}), \quad q_1, q_2 \in \mathcal{D}_m.
\]

We sum up our analysis in the following theorem, where we use the fact that $H^{3/2}(\Gamma_2)$ is continuously embedded in $C^2(\Gamma_2)$.

Theorem 1. Let $f \in H^{3/2}(\Gamma_2), f \neq 0, 0 \leq q_0 \in L^{\infty}(\Gamma_1), q_0 \neq 0$, let K be a compact subset of Γ_0, given by (2), with nonempty interior so that $\Gamma_1 \setminus K \neq \emptyset$ and let γ_2 be a nonempty open subset of Γ_2. There exists a neighborhood U of q_0 in $L^2(\Gamma_1)$, depending on f, Ω and K with the property that, if $m > 0$ is chosen in such a way that
\[
\mathcal{D}_m = mB_{3/2}(\Gamma_1) \cap \overline{U} \cap L^2(\Gamma_1) \neq \emptyset,
\]
we find a constant $C > 0$, depending on f, Ω, q_0, K and γ_2, so that
\[
\|q_1 - q_2\|_{L^2(\Gamma_1)} \leq C\Psi(\|u_{q_1} - u_{q_2}\|_{H^3(\Omega)}), \quad q_1, q_2 \in \mathcal{D}_m.
\]

Observe that, as in [2], the last theorem can be extended to the case where $\partial \Gamma_1 \cap \partial \Gamma_2 \neq \emptyset$. Also, for the most general case, in dimensions two and three, we can prove a stability estimate of triple logarithmic type (see [3, Theorem 4.9]).

Remark 1. Note that, in general, Γ_0 given by (2) is strictly contained in Γ_1 for an arbitrary q_0. However, we can construct an example of q_0 for which $\Gamma_0 = \Gamma_1$. To this end, fix $0 < \alpha < 1$ and, for $0 \leq f \in C^{2,\alpha}(\Gamma_2)$, denote by $w(f) \in C^{2,\alpha}(\overline{\Omega})$ the solution of the BVP

\[
\begin{align*}
\Delta w &= 0 & \text{in } \Omega, \\
\partial_\nu w &= 0 & \text{on } \Gamma_1, \\
\partial_\nu w &= f & \text{on } \Gamma_2.
\end{align*}
\]

According to strong maximum principle’s and Hopf’s lemma (see for instance [4]), $\partial_\nu w < 0$ on Γ_1. Let $q_0 = -\partial_\nu w(f)|_{\Gamma_1}(> 0)$ and set $u_0 = 1 + w$. Then it is straightforward to check that u_0 is the unique solution of the BVP

\[
\begin{align*}
\Delta u &= 0 & \text{in } \Omega, \\
\partial_\nu u + q_0 u &= 0 & \text{on } \Gamma_1, \\
\partial_\nu u &= f & \text{on } \Gamma_2.
\end{align*}
\]

We see that for this particular choice of q_0, we have $\Gamma_0 = \Gamma_1$.

Acknowledgment: The author is very grateful to Daijun Jiang and Jun Zou for their valuable comments during his stay at the Chinese University of Hong Kong on February 2017. He warmly thanks the Chinese University of Hong Kong for hospitality.

References