THE EFFECTS OF CENTRAL ANGIOTENSIN II AND ITS SPECIFIC BLOCKERS ON NOCICEPTION. POSSIBLE INTERACTIONS WITH OXIDATIVE STRESS STATUS

EFEKTI CENTRALNOG ANGIOTENZINA II I NJEGOVIH SPECIFIČNIH BLOKATORA NA NOCICEPCIJU. MOGUĆE INTERAKCIJE SA STATUSOM OKSIDATIVNOG STRESA

Oana Arcan1,2, Alin Ciobica1,3, Walther Bild2,3, Bogdan Stoica2, Lucian Hritcu1, Dumitru Cojocaru1

1 »Alexandru Ioan Cuza« University, Iasi, Romania
2 »Gr. T. Popa« University of Medicine and Pharmacy, Iasi, Romania
3 »Center of Biomedical Research of the Romanian Academy«, Iasi, Romania

Summary: It has already been demonstrated that a complete brain renin–angiotensin system (RAS) exists distinctly separate from the peripheral system and is implicated in complex functions such as memory, emotional responses and pain. Regarding the implications of angiotensin II (the main bioactive peptide of RAS) in pain, although there are many studies in this area of research, most of the results are controversial. Also, it seems that oxidative stress follows angiotensin II infusion, but the role of AT1 vs. AT2 receptors is not well established. In this context, we were interested in studying the effects of central RAS on nociception, through the intracerebroventricular administration of losartan and PD-123177 (antagonists for the AT1/AT2 receptors), as well as an ACE inhibitor (captopril) and also angiotensin II in rats, which were subsequently tested using the hot-plate task, a well known behavioral test for pain perception. We present here the analgesic effect of angiotensin II administration, as shown by increased latency-time in the hot-plate, as well as a nociceptive effect of angiotensin II blockers like AT1 and AT2 specific antagonists (losartan and PD-123177) and an ACE inhibitor (captopril), as their administration resulted in decreased latency-time. Moreover, we demonstrated a significant correlation between the results of the nociceptive test and markers of oxidative stress. This method provides a simple, rapid and quantitative way to evaluate the effects of central RAS on nociception.

Introduction

The discovery that all components of the renin–angiotensin system (RAS) are present in the brain led investigators to postulate the existence of a local brain RAS (1). In this way, it has already been demonstrated that a complete brain RAS exists that is distinctly separate from the peripheral system and comprises all necessary precursors and enzymes required for the formation and metabolism of the biologically active forms of angiotensins (2).
behavioral task and the levels of some main oxidative stress markers. This provides additional evidence for an analgesic effect of Ang II administration, as well as for a nociceptive effect of Ang II blockers. Moreover, a significant correlation between the noceception and angiotensin II-induced oxidative stress is presented.

Keywords: angiotensin II, pain, oxidative stress

Also, it is now generally accepted that the brain RAS with its bioactive peptides, which mainly include angiotensin II (Ang II), is involved not only in cardiovascular functions and body fluid homeostasis (3), but also in the regulation of some superior functions involving the regulation of cognitive functions (learning and memory processes) (4, 5), emotional responses (6, 7) and also noceception (8, 9).

These effects are modulated by specific angiotensin receptors. Numerous studies have led to the identification of two pharmacologically specific angiotensin receptors type 1 (AT 1) and type 2 (AT 2), which are well represented in various brain areas (10). Our group also previously demonstrated that the administration of losartan and PD-123177, which are selective antagonists for the AT 1 and AT 2, results in anxiolytic effects in rats (7). Also, similar effects were reported as the result of angiotensin-converting enzyme (ACE) inhibitors like captopril (7), which is also commonly used as an antihypertensive drug (11).

Regarding the implications of Ang II in pain, although there are many studies in this area of research, most of the results are conflicting. In this way, while some reports stated that Ang II administration resulted in diminishing morphine-induced analgesia (12) and also that specific blockers like spirapril and losartan exert antinociceptive effects (13), other authors demonstrated opposite effects with Ang exhibiting analgesic effects (14) and its blockers (enalapril or losartan) generating increased pain sensitivity (15). Moreover, combined effects were also reported sometimes within the same experiment, as both increased and decreased noceception was observed as a result of various Ang II blockers administration (16).

Additionally, it seems that oxidative stress follows Ang II infusion, but the role of AT 1 vs. AT 2 receptors is not very well established (17). Also, it has been shown that the administration of Ang II facilitates the formation of some free radicals like superoxide (O$_2^-$) (18), while losartan seems to exert antioxidant effects (19). There are also controversies regarding the effects of angiotensin II on oxidative stress, considering that in some experiments losartan significantly decreased angiotensin II-induced oxidative stress, while PD-123319 did not (20).

In this context, in the present paper we were interested in studying the effects of the central RAS on noceception, through the intracerebroventricular (icv) administration of losartan and PD-123177 (antagonists for the AT 1/AT 2 receptors), as well as an ACE inhibitor (captopril) and also Ang II in rats, which were subsequently tested in the hot-plate task, one of the most well-known behavioral tests for pain perception. Additionally, we were interested to know if there is a possible correlation between the effects of Ang II on noceception and some oxidative stress markers which were determined from the temporal lobe of rats, considering that this is one of the brain areas most susceptible to oxidative stress (21).

Material and Methods

Animals

Sixty male Wistar rats weighing 200–250 g at the start of the experiment were used. The animals were housed in a temperature- and light-controlled room (22 °C, a 12-h cycle starting at 08:00 h) and were fed and allowed to drink water ad libitum. Rats were treated in accordance with the guidelines on animal bioethics from the Act on Animal Experimentation and Animal Health and Welfare Act from Romania and all procedures were in compliance with the European Council Directive of 24 November 1986 (86/609/EEC).

Neurosurgery

All surgical procedures were conducted under aseptic conditions, under sodium pentobarbital (45 mg/kg b.w., i.p., Sigma) anesthesia. Rats were mounted in the stereotaxic apparatus 11° below horizontal zero plane.

Losartan, PD-123177, captopril and Ang II were i.c.v. administered (0.1 μg/kg b.w., Sigma) by freehand through a plastic (silastic) cannula (0.9 mm outer diameter), implanted stereotaxically in the left cerebral ventricle at the following coordinates: 0.5 mm posterior to bregma; 1.3 mm lateral to the midline; 4.3 mm ventral to the surface of the cortex (22). The cannula was positioned with acrylic dental cement and secured by one stainless steel screw. After surgery the rats were isolated in a separate cage and protected with streptomycin 300 mg/kg bw. The sham-operated rats were injected with saline. The location of the i.c.v. cannulas in lesioned rats was verified by injecting a dye (trypan blue) through each cannula at the end of the experiment. Brains were...
removed and cut with a scalpel and the spread of the
dye within the ventricles was examined. All cannulas
were found to be in the right position. Pain testing
was started after 7 consecutive days of treatment.

Hot-plate

The investigation of pain sensibility was per-
formed using a hot-plate (Hugo Basile). A plastic
cylinder is used to confine the rat to the heated sur-
face of the plate which is maintained at 55 °C using
a thermostat. The reaction time (the latency time) to
two different types of behavior was monitored: licking
the paw and jumping (23).

Tissue collection

After the behavioral tests, all rats were anes-
thetized, rapidly decapitated, and the whole brain was
removed. The temporal lobes were collected. Each
temporal tissue sample was weighed and homo-
genized with a Potter Homogenizer coupled with
Cole-Parmer Servodyne Mixer in bidistilled water (1 g
tissue/10 mL bidistilled water). Samples were cen-
trifuged 15 min at 3000 rpm. Following centrifuga-
tion, the supernatant was separated and pipetted into
tubes.

Biochemical estimations

Regarding the biochemical assessments, we de-
cided to classically determine the main antioxidant
enzymes (first line of defense in the way of free radic-
cals) and a lipid peroxidation marker.

Superoxide dismutase (SOD) activity was mea-
sured by the percentage reaction inhibition rate of
enzyme with WST-1 substrate (a water soluble tetra-
zolium dye) and xanthine oxidase using a SOD Assay
Kit (Fluka, product number: 19160) according to the
manufacturer’s instructions. Each endpoint assay was
monitored by absorbance at 450 nm (the absorbance
wavelength for the colored product of WST-1 reaction
with superoxide) after 20 min of reaction time at
37 °C. The percent inhibition was normalized by mg
protein and presented as SOD activity units.

Glutathione peroxidase (GPX) activity was mea-
sured using the GPX cellular activity assay kit CGP-1
(Sigma Chemicals). This kit uses an indirect method,
based on the oxidation of glutathione (GSH) to ox-
idized glutathione (GSSG) catalyzed by GPX, which is
then coupled with recycling GSSG back to GSH uti-
lizing glutathione reductase (GR) and NADPH. The
decrease in NADPH at 340 nm during oxidation of
NADPH to NADP is indicative of GPX activity.

Malondialdehyde (MDA) levels were determined
by the thiobarbituric acid reactive substances (TBARs)
assay. Two hundred microliters of temporal lobe
homogenate (supernatant) was added and briefly
mixed with 1 mL of trichloroacetic acid at 50%, 0.9
mL of TRIS-HCl (pH 7.4) and 1 mL of thiobarbituric
acid 0.73%. After vortex mixing, samples were main-
tained at 100 °C for 20 minutes. Afterwards, sam-
ples were centrifuged at 3000 rpm for 10 min and
supernatant read at 532 nm. The signal was read
against an MDA standard curve, and the results
were expressed as nmol/mg protein (24–26).

Total protein was measured using the Bradford
dye-binding method, with bovine serum albumin as
standard (27).

Statistics

The animal’s behavior in the hot-plate task was
statistically analyzed using one-way analysis of vari-
ance (one-way ANOVA). The results are expressed as
mean ± SEM. Post hoc analyses were performed
using Tukey’s honestly significant difference test in
order to compare losartan, PD-123177, captopril and
angiotensin II groups. F values for which P<0.05
were regarded as statistically significant. Pearson’s
correlation coefficient and regression analysis were
used to evaluate the connection between the latency-
time in the hot-plate and the central oxidative stress
markers.

Results

Regarding the effects of RAS components in
nociception, as studied in the hot-plate, we report
here a significant decrease of the latency time to
jump/licking paws in the case of both antagonists
administered: losartan (F(1.22)=95, p<0.0001)
and PD-123177 (F(1.22)=41, p<0.0001), as well
as in the case of the angiotensin-converting enzyme
inhibitor captopril (F(1.22)=18, p=0.003), as com-
pared to the control group (Figure 1).

![Figure 1](image_url)

Figure 1 Effect of angiotensin II on latency time in the hot-
plate. The values are mean ± S.E.M. (n=12 animals per
group). ***p<0.0001 vs. control group, **p=0.003 vs. con-
trol group.
Figure 2 Correlations between latency time in the hot-plate and SOD (A), GPX (B) and MDA (C).
Additionally, we observed a significant increase (F(1,22)=40, p<0.0001) of the latency time in the Ang II administrated group, as compared to control rats (Figure 1).

Also, post hoc analysis revealed significant differences between losartan and Ang II (p<0.0001), PD-123177 and Ang II (p<0.0001), as well as between captopril and Ang II (p<0.0001) groups. Still, no significant differences were found between losartan and PD-123177 (p=0.1), losartan and captopril (p=0.06) and PD-123177 vs. captopril (p=0.08) groups.

Moreover, we found significant correlations between the results of the behavioral task, represented by the latency time in the hot-plate, and the levels of some oxidative stress markers, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and malondialdehyde (MDA). In this way, the Pearson’s correlation coefficient and regression analysis showed the following correlations: latency time vs. SOD (n=60, r=−0.401, p=0.001) (Figure 2A), latency time vs. GPX (n=60, r=−0.343, p=0.007) (Figure 2B) and latency time vs. MDA (n=60, r=0.590, p<0.0001) (Figure 2C).

Discussion

In the present work we demonstrated an analgesic effect of Ang II administration, as shown by increased latency time in the hot-plate, as well as a nociceptive effect of Ang II blockers like AT 1 and AT 2 specific antagonists (losartan and PD-123177) and an ACE inhibitor (captopril), as their administration resulted in decreased latency time in the hot-plate. Moreover, we present here a significant correlation between the results of the nociceptive behavioral task and the levels of some main oxidative stress markers.

As mentioned, previous studies regarding the effects of Ang in nociception resulted in contrasting results with reports stating both analgesic and increased pain sensibility effects (12–16). Similar facts were also reported regarding the various blockers of Ang II, both at the receptor levels, as well as on the ACE blocking level (12–16). Furthermore, there are experiments where the administration of various Ang II blockers, such as saralasin, sarmsesin, losartan or PD123319, generated both increased and decreased nociception, depending on the dose (16). Besides the dose used, it seems that the conflicting result described above can also be explained by the different strains of animals used, as well as various behavioral tasks selected for the study of nociception.

These aspects could be very important considering that most of the previous studies regarding various neurotransmitters implicated in the modulation of pain were especially focused on the opioid peptides. However, considering the integrative aspects which characterize the modulation of nociceptive processes, additional studies regarding other neurochemical systems such as the bioactive peptides of RAS (Ang II) are very significant.

Moreover, in the present work we demonstrated a significant correlation between the nociception expressed as the latency time in the hot-plate and the specific activity of the main antioxidant enzymes (SOD and GPX) and a lipid peroxidation marker (MDA). Actually, there are some authors who previously demonstrated that oxidative stress contributes to persistent pain (28–30). In this way, removal of excessive ROS by free radical scavengers, such as phenyl N-tert-butylnitroline (PBN) and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), produced significant analgesic effects in both neuropathic pain (31–33) and inflammatory pain (34).

Furthermore, the number of neurons showing mitochondrial ROS production was significantly increased in the lumbar spinal dorsal horn in spinal nerve ligated neuropathic rats (35). Also, increased levels of extracellular hydrogen peroxide were observed in the spinal trigeminal nucleus after formalin injection into the lip of the rat, and this increase coincided with pain behaviors (36).

Additionally, it was demonstrated that SOD, which converts free-radical superoxide to hydrogen peroxide (37), was very effective in reducing inflammation indicators and hyperalgesia after carrageenan injection into the rat paw (38).

Still, while it is becoming clear that ROS are involved in persistent pain, the mechanisms by which they contribute to pain are still unknown.

We demonstrated here the antinociceptive effects of Ang II administration, as shown by the increased latency time in the hot-plate, as well as a nociception-induced effect of Ang II blockers like losartan, PD-123177 and captopril. Further, we present a significant correlation between the results of the nociceptive behavioral task and the levels of some main oxidative stress markers such as SOD, GPX and MDA.

Acknowledgments. Ciobica Alin is supported by a POSDRU project /89/1.5/S/49944, «Alexandru Ioan Cuza University», Iasi. The other authors declare that they have no potential conflicts of interest to disclose.

Conflict of interest statement

The authors stated that there are no conflicts of interest regarding the publication of this article.
28. Khalil Z, Liu T, Helme RD. Free radicals contribute to the reduction in peripheral vascular responses and the main-

Received: February 3, 2012
Accepted: April 2, 2012