Vietoris topology on spaces dominated by second countable ones

Abstract: For a given space X let $C(X)$ be the family of all compact subsets of X. A space X is dominated by a space M if X has an M-ordered compact cover, this means that there exists a family $\mathcal{F} = \{F_K : K \in C(M)\} \subset C(X)$ such that $\bigcup \mathcal{F} = X$ and $K \subseteq L$ implies that $F_K \subseteq F_L$ for any $K, L \in C(M)$. A space X is strongly dominated by a space M if there exists an M-ordered compact cover \mathcal{F} such that for any compact $K \subset X$ there is $F \in \mathcal{F}$ such that $K \subset F$. Let $K(X) = C(X) \setminus \{\emptyset\}$ be the set of all nonempty compact subsets of a space X endowed with the Vietoris topology. We prove that a space X is strongly dominated by a space M if and only if $K(X)$ is strongly dominated by M and an example is given of a σ-compact space X such that $K(X)$ is not Lindelöf Σ. It is established that if the weight of a scattered compact space X is not less than \aleph_0, then the spaces $C_p(K(X))$ and $K(C_p(X))$ are not Lindelöf Σ. We show that if X is the one-point compactification of a discrete space, then the hyperspace $K(X)$ is semi-Eberlein compact.

Keywords: Strong domination by second countable spaces, Hemicompact space, Lindelöf p-space, Lindelöf Σ-space, Vietoris topology, One-point compactification, Eberlein compact, Scattered spaces

MSC: 54B20, 54C10, 54C30, 54C35, 54D45, 54D20, 54G12

DOI 10.1515/math-2015-0018
Received August 14, 2014; accepted December 6, 2014.

1 Introduction

All spaces under consideration are assumed to be Tychonoff. The space \mathbb{R} is the set of real numbers with its natural topology and ω denotes its cardinality. The set of natural numbers is denoted by \mathbb{N}. Let ω be the first infinite ordinal number. For a space X let $C_p(X)$ be the space of continuous maps from X to \mathbb{R} endowed with the topology of pointwise convergence. In [2] and [14] we can find properties of function spaces. For a given space X let $K(X)$ be the set of all nonempty compact subsets of X endowed with the Vietoris topology whose base is determined by finite families U_1, U_2, \ldots, U_n of open subsets of X as follows

$$\{U_1, U_2, \ldots, U_n\} = \{F \in K(X) : F \subset \bigcup\{U_i : i \leq n\} \cap U_i \neq \emptyset \forall i \leq n\}.$$

For a natural number n, let $\mathcal{F}_n(X)$ be the set of all the nonempty subsets of X with at most n points, endowed with the topology induced from $K(X)$. By $\mathcal{F}(X)$ we denote the hyperspace of all nonempty finite subsets of the space X. Note that $\mathcal{F}(X) = \bigcup \{\mathcal{F}_n(X) : n \in \mathbb{N}\} \subset K(X)$. For the information about hyperspaces of nonempty compact subsets see [6] and [7]. A space is called Lindelöf p if it can be perfectly mapped onto a second countable space. A space is called Lindelöf Σ if it is a continuous image of a Lindelöf p-space. In 1991 Cascales and Orihuela introduced in [4] the class of spaces dominated by a given space M. For a given space X let $C(X)$ be the family of all compact subsets of X. A space X is called dominated by a space M if X has an M-ordered compact cover, this
means that there exists a family $\mathcal{F} = \{ F_K : K \in \mathcal{C}(M) \} \subseteq \mathcal{C}(X)$ such that $\bigcup \mathcal{F} = X$ and $K \subseteq L$ implies that $F_K \subseteq F_L$ for any $K, L \in \mathcal{C}(M)$. In [4] it was proved that a Lindelöf Σ-space is dominated by a second countable space. A space X is strongly dominated by a space M if there exists an M-ordered compact cover \mathcal{F} such that for any compact $K \subseteq X$ there is $F \in \mathcal{F}$ such that $K \subseteq F$. Strong domination was introduced by Cascales, Orihuela and Tkachuk in [5].

A compact space is called Eberlein compact if it is homeomorphic to a subspace of $C_p(Y)$ for some compact space Y. By $\Sigma^*(S)$ we denote the so called Σ^*-product of S copies of \mathbb{R} which is defined by the set of all those $x \in \mathbb{R}^S$ such that the set $\{ s \in S : |x(s)| \geq \epsilon \}$ is finite for every $\epsilon > 0$. In 1968 Amir and Lindenstrauss proved in [1] that a compact space is Eberlein compact if and only if it can be embedded into a Σ^*-product of real lines. In 2004 Kubis and Leiderman defined in [9] semi-Eberlein compact spaces. A space X is called semi-Eberlein if for some set S there is an embedding $X \subseteq \mathbb{R}^S$ such that $\Sigma^*(S) \cap X$ is dense in X. By $w(X)$ we denote the weight of the space X. For a given cardinal number κ, a space X is called κ-compact if it is the union of κ many compact subspaces of X. The rest of notation and terminology is standard and follows [6].

It is well known that if the space X is either compact or locally compact, then $K(X)$ is equivalently compact or locally compact. In [16] it was proved that if X is a Dieudonné complete space then $K(X)$ is also Dieudonné complete. A space X is called hemicompact if it has a sequence $\{ K_n : n \in \mathbb{N} \}$ of compact subsets such that for every compact $A \subseteq X$ there exists $n \in \mathbb{N}$ for which $A \subseteq K_n$. Hemicompactness (see [12]) and Lindelöf p-property are inherited to $K(X)$. In this work we study hyperspaces of Eberlein (semi-Eberlein) compact, Lindelöf Σ-spaces and spaces dominated by second countable ones. We prove that there exists a σ-compact space X such that $K(X)$ is not Lindelöf Σ. We show that if X is strongly dominated by a space M then $K(X)$ is strongly dominated by M. We prove that if X is a scattered space and its weight is not less than \aleph, then $K(C_p(X))$ and $C_p(K(X))$ are not Lindelöf Σ-spaces. We show that if X is the one-point compactification of a discrete space, then the hyperspace $K(X)$ is a semi-Eberlein compact space.

2 Hyperspaces of Lindelöf Σ-spaces and spaces dominated by second countable ones

Recall that a space is Lindelöf p if it can be perfectly mapped onto a space with a countable base. It is well known that a space X is Lindelöf p if and only if the hyperspace $K(X)$ is Lindelöf p. In 1969 Nagami introduced in [11] the class of Lindelöf Σ-spaces. A space X is Lindelöf Σ-space if it is a continuous image of a Lindelöf p-space. In [15] we can find properties of Lindelöf Σ-spaces. It is worth to mention that any Lindelöf Σ-space is σ-compact. Since X is homeomorphic to $\mathcal{F}_\Sigma(X)$ and $\mathcal{F}_\Sigma(X)$ is closed in $K(X)$ we note that if $K(X)$ is Lindelöf Σ, then X is Lindelöf Σ. For a given space X and every $n \in \mathbb{N}$ define the natural continuous map $\mu_n : X^n \to \mathcal{F}_n(X)$ by the rule $\mu_n(x_1, x_2, \ldots, x_n) = \{x_1, x_2, \ldots, x_n\}$.

Proosition 2.1. If X is Lindelöf Σ-space, then the hyperspace $K(X)$ has an everywhere dense Lindelöf Σ-subspace.

Proof. The hyperspace $\mathcal{F}(X)$ is an everywhere dense subspace of $K(X)$. The class of Lindelöf Σ-spaces is stable under continuous images, closed subspaces, countable products and countable unions. The hyperspace $\mathcal{F}_n(X)$ is the image of X^n under continuous function μ_n. The hyperspace $\mathcal{F}(X)$ is the countable union of its subspaces $\mathcal{F}_n(X)$ with $n \in \mathbb{N}$, hence $\mathcal{F}(X)$ is Lindelöf Σ. Therefore $K(X)$ has an everywhere dense Lindelöf Σ-subspace. \[\square\]

A space X is called ω-monolithic if for any countable subset $A \subseteq X$ the network weight of \overline{A} is countable. If X is an Eberlein compact space then $C_p(X)$ is Lindelöf Σ. A compact space X is called Gulko compact if $C_p(X)$ is Lindelöf Σ, hence an Eberlein compact space is Gulko compact (see IV.2.5 in [2]). A Gulko compact space is ω-monolithic. It is well known that $K(X)$ is σ-compact if and only if $K(X)$ is hemicompact and if only if X is hemicompact (see [12]). The function space $C_p(X)$ is σ-compact if and only if X is finite. From this fact it follows that $K(C_p(X))$ is σ-compact if and only if X is finite.
Proposition 2.2. If X is an Eberlein compact space, then $K(C_p(X))$ contains a dense σ-compact subspace. If X is a Gulko compact space, then $K(C_p(X))$ contains an everywhere dense Lindelöf Σ-subspace.

Proof. If X is an Eberlein compact, from Theorem IV.1.7 of [2] it follows that the function space $C_p(X)$ contains a σ-compact dense subspace. Thus it follows that $K(C_p(X))$ contains a σ-compact dense subspace (see [12]).

If X is a Gulko compact space, then $C_p(X)$ is Lindelöf Σ, hence from Proposition 2.1 it follows that $K(C_p(X))$ contains an everywhere dense Lindelöf Σ-subspace.

Let κ be an infinite cardinal number. A space X is called κ-hemicompact if there exists a family $F \subset K(X)$ such that $|F| \leq \kappa$ and for any $A \in K(X)$ there exists $B \in F$ such that $A \subset B$. A space is hemicompact if and only if it is ω-hemicompact. It is well known that any σ-compact space is Lindelöf Σ. If X is hemicompact, then $K(X)$ is hemicompact and therefore Lindelöf Σ.

Proposition 2.3. Let X be a compact space such that $|X| \geq 2$, $a \in X$, κ an infinite cardinal number and the σ-product $\sigma(X^\kappa) = \{(x_\alpha) \in X^\kappa : |\{\alpha < \kappa : x_\alpha \neq a\}| < \infty\}$. Then:

i) $\sigma(X^\kappa)$ is σ-compact and it is not κ-hemicompact;

ii) if $\kappa \geq \omega$, then the hyperspace $K(\sigma(X^\kappa))$ is not Lindelöf Σ.

Proof. i) For any natural number n the space $\sigma_n(X^\kappa) = \{(x_\alpha) \in X^\kappa : |\{\alpha < \kappa : x_\alpha \neq a\}| \leq n\}$ is compact. Then $\sigma(X^\kappa) = \cup j \sigma_n(X^\kappa) : n \in \mathbb{N}\}$ is a σ-compact space.

The σ-product $\sigma(\mathbb{D})$, where $\mathbb{D} = \{0, 1\}$, is homeomorphic to a closed subspace of $\sigma(X^\kappa)$. From Theorem 3.9 of [5] it follows that $\sigma(\mathbb{D})$ is not κ-hemicompact. Then the σ-product $\sigma(X^\kappa)$ is not κ-hemicompact, because κ-hemicompactness is hereditary to closed subspaces.

ii) From i) it follows that $\sigma(X^\kappa)$ is not κ-hemicompact. Thus from Theorem 2.1 of [12] it follows that the hyperspace $K(\sigma(X^\kappa))$ is not κ-compact. Since $\kappa \geq \omega$ the hyperspace $K(\sigma(X^\kappa))$ is not ω-compact. Since any Lindelöf Σ-space is ω-compact, we conclude that the hyperspace $K(\sigma(X^\kappa))$ is not Lindelöf Σ.

If $A(\omega)$ is the one-point compactification of a countable discrete space, then it is metrizable compact, thus its hyperspace $K(A(\omega)))$ is also metrizable compact, hence it is an Eberlein compact space. In contrast to this fact we have the next proposition. Let ω_1 be the first non countable ordinal number.

Proposition 2.4. Let $A(\omega_1) = Y \cup \{\infty\}$ be the one-point compactification of the discrete space $Y = \{x_\alpha : \alpha < \omega_1\}$. Then the hyperspace $K(A(\omega_1)))$ is not ω-monolithic and, therefore, it is not a Gulko compact space.

Proof. There is $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ a countable family of infinite subsets of Y such that for every disjoint finite sets $F, G \subset Y$ there are $U_k, U_n \in \mathcal{U}$ such that $U_k \cap U_n = \emptyset$, $F \subset U_k$ and $G \subset U_n$. Let us consider the following subsets of the hyperspace $K(A(\omega_1))$:

\[A = \{[\infty], A(\omega_1)\} \cup \{K \subset A(\omega_1) : \infty \in K\}, \]

\[B = \{[\infty, x] : x \in Y\} \subset A \text{ and} \]

\[D = \{[\infty] \cup (U_{1k} \cup U_{2k} \cup \cdots \cup U_{nk}) : U_{ik} \in \mathcal{U}, k = 1, \ldots, n\} \subset A. \]

The hyperspace $K(\omega_1)$ is compact and the set $\{Y\}$ is open in $K(A(\omega_1))$, then the subspace $A = K(A(\omega_1)) \setminus \{Y\}$ is compact. Since the family \mathcal{U} is countable, the set D is also countable. The set B is an infinite non countable discrete subspace of A, in fact for a given point $[\infty, x] \in B$, where $x \in Y$, take the open standard set $\{[x], A(\omega_1)\}$, it is easy to see that $B \cap (\{x\}, A(\omega_1)) = \{[\infty, x]\}$. The countable set D is dense in A. The set B is contained in the closure of D, however B does not have a countable network. Then the hyperspace $K(A(\omega_1))$ is not ω-monolithic and therefore it is not a Gulko compact space.

For a given continuous map $f : X \to Y$, let $K(f) : K(X) \to K(Y)$ be the induced continuous map defined by $K(f)(A) = f(A)$ for any $A \in K(X)$.

Proposition 2.5. If X is a scattered compact space and its weight is $\kappa \geq \omega_1$, then the hyperspace $K(X)$ is not a Gulko compact space.
Proof. There exists a continuous map g from X onto $A(\kappa)$, the one-point compactification of the discrete space of cardinality κ. The map g is perfect, hence the induced map $K(g) : K(X) \to K(A(\kappa))$ is surjective (see [12]). From the previous proposition it follows that $K(A(\kappa))$ is not a Gulko compact and it is a continuous image of $K(X)$, therefore $K(X)$ is not a Gulko compact space.

\[\square\]

Proposition 2.6. Let X be a scattered compact space.
\begin{enumerate}[i)]
\item If X has countable weight, then $C_p(K(X))$ and $K(C_p(X))$ are Lindelöf Σ-spaces.
\item If $\kappa = w(X) > \omega$, then $K(C_p(X))$ is not a Lindelöf Σ-space.
\item If $\kappa = w(X) \geq \omega_1$, then $C_p(K(X))$ is not a Lindelöf Σ-space.
\end{enumerate}

Proof. i) If X is a compact scattered space of countable weight, then it is a countable metrizable compact. Thus $K(X)$ is metrizable compact and $C_p(K(X))$ is Lindelöf Σ, because $K(X)$ is an Eberlein compact. Since X is countable the weight of $C_p(X)$ is countable, then $K(C_p(X))$ has also a countable base. Any space with countable weight is Lindelöf, therefore $K(C_p(X))$ is a Lindelöf Σ-space.

ii) Let $A(\kappa)$ be the one-point compactification of a discrete set of cardinality κ. Since $\sigma(D^\kappa)$ is a closed subspace of $\Sigma_\kappa(\kappa)$ and $\Sigma_\kappa(\kappa)$ is homeomorphic to $C_p(A(\kappa))$, we conclude that $C_p(A(\kappa))$ is not κ-hemicompact and therefore it is not κ-hemicompact. From Theorem 2.1 of [12] it follows that $K(C_p(A(\kappa)))$ is not κ-compact, then it is not a Lindelöf Σ-space. There exists a continuous onto map f from X to $A(\kappa)$. Hence $C_p(A(\kappa))$ is homeomorphic to a closed subspace of $C_p(X)$, then $K(C_p(A(\kappa)))$ is homeomorphic to a closed subspace of $K(C_p(X))$. Since a closed subspace of a Lindelöf Σ-space is Lindelöf Σ, we conclude that $K(C_p(X))$ is not a Lindelöf Σ-space.

iii) The induced map $K(f) : K(X) \to K(A(\kappa))$ is onto. From the compactness of $K(X)$ and $K(A(\kappa))$ it follows that $C_p(K(A(\kappa)))$ is homeomorphic to a closed subspace of $C_p(K(X))$. From Proposition 2.4 it follows that $K(A(\kappa))$ is not Gulko compact, hence $C_p(K(A(\kappa)))$ is not Lindelöf Σ, therefore $C_p(K(X))$ is not a Lindelöf Σ-space.

\[\square\]

A family γ of subsets of a topological space X is called T_0-separating if, for every pair of points $x, y \in X$, there is $U \in \gamma$ such that the set $U \cap \{x, y\}$ contains exactly one point. A family γ of sets of a topological space X is called point finite (countable) if every point of X is contained only in a finite (countable) collection of sets of γ. In [9] Kubis and Leiderman gave an internal characterization of semi-Eberlein compact spaces.

Proposition 2.7. Let X be a compact space. Then X is semi-Eberlein compact if and only if there exists a T_0-separating collection \mathcal{U} consisting of open F_σ subsets of X such that $\mathcal{U} = \bigcup\{U_n : n \in \mathbb{N}\}$ and the set $\{x \in X : \forall n \in \mathbb{N}\{U \in \mathcal{U}_n : x \in U\} \text{ is finite}\}$ is dense in X.

It is easy to see that any Eberlein compact space is semi-Eberlein compact. We have proved in Proposition 2.4 that the hyperspace of compact sets of the one-point compactification $A(\kappa)$ of a non-countable discrete space is not Eberlein compact. We will prove that semi-Eberlein compactness of $A(\kappa)$ is preserved by its hyperspace $K(A(\kappa))$.

Proposition 2.8. Let $A(\kappa)$ be the one-point compactification of a discrete space X of cardinality κ. Then the hyperspace $K(A(\kappa))$ is a semi-Eberlein compact space.

Proof. Let $A(\kappa) = \{x_\alpha : \alpha < \kappa\} \cup \{\infty\}$ be the one-point compactification of the discrete space $X = \{x_\alpha : \alpha < \kappa\}$. It is easy to see that the family $\mathcal{U} = U_1 \cup U_2$, where $U_1 = \{(A(\kappa), \{x_{a_1}\}, \{x_{a_2}\}, \ldots, \{x_{a_n}\}) : x_{a_k} \in X \ \forall k = 1, \ldots, n \text{ and } n \in \mathbb{N}\}$ and $U_2 = \{(\{x_{a_1}\}, \{x_{a_2}\}, \ldots, \{x_{a_n}\}) : x_{a_k} \in X \ \forall k = 1, \ldots, n \text{ and } n \in \mathbb{N}\}$, contains only compact open subsets of the hyperspace $K(A(\kappa))$. We are going to prove that this family is T_0-separating the points of $K(A(\kappa))$. It is important to mention that any compact subset of $A(\kappa)$ is finite or infinite containing ∞.

Let A, B be two different points of the hyperspace $K(A(\kappa))$. If $\infty \notin B$, then the open set $\{\{b_1\}, \{b_2\}, \ldots, \{b_m\}\}$, where $B = \{b_1, b_2, \ldots, b_m\}$, separates the points A and B. If $\infty \notin A$ we can separate the points A and B by the same way.
If \(\infty \in A \cap B \), then there exists a point \(p \neq \infty \) such that \(p \in A \setminus B \) or \(p \in B \setminus A \). In this case the open set \(\{A(\kappa), \{p\}\} \) separates the points \(A \) and \(B \).

It is easy to see that each finite subset of \(A(\kappa) \) is contained only in a finite family of elements of \(U \). Note that every compact subset of \(X \) is finite and \(X \) is a dense subset of \(A(\kappa) \). Thus the family \(U \) is point finite in the dense set \(F(X) \) of finite nonempty subsets of \(X \), hence \(U \) satisfies the conditions of Proposition 2.7. Therefore the hyperspace \(K(A(\kappa)) \) is a semi-Eberlein compact space.

A space \(X \) is called dominated by a space \(M \) if \(X \) has an \(M \)-ordered compact cover i.e. there exists a family \(F = \{F_K : K \in C(M)\} \subseteq C(X) \) such that \(\bigcup F = X \) and \(K \subseteq L \) implies that \(F_K \subseteq F_L \) for any \(K, L \in C(M) \). In [4] it was proved that any Lindelöf \(\Sigma \)-space is dominated by a second countable space. If \(X \) is dominated by a space \(M \) of weight \(w(M) = \kappa \geq \omega \), then \(X \) is \(2^\kappa \)-compact, where \(2^\kappa \) denotes the cardinality of the family of all subsets of a set of cardinality \(\kappa \).

A space is called strongly dominated by a space \(M \) if there exists an \(M \)-ordered compact cover \(F \) such that for any compact \(K \subseteq X \) there is \(F \in F \) such that \(K \subseteq F \). If \(X \) is strongly dominated by a space \(M \) of weight \(w(M) = \kappa \geq \omega \), then \(X \) is \(2^\kappa \)-hemicompact.

Proposition 2.9. A space \(X \) is strongly dominated by a space \(M \) if and only if the hyperspace \(K(X) \) is strongly dominated by \(M \).

Proof. Suppose that \(X \) is strongly dominated by \(M \) and take \(F = \{F_K : K \in C(M)\} \subseteq C(X) \) an \(M \)-ordered compact cover of \(X \), such that for any compact \(K \subseteq X \) there is \(F \in F \) such that \(K \subseteq F \). Let define \(G = \{K(F_K) : K \in C(M)\} \), since for any \(K \in C(M) \) the hyperspace \(K(F_K) \) is compact we have \(G \subseteq C(K(X)) \). Take \(K, L \in C(M) \) such that \(K \subseteq L \), then \(F_K \subseteq F_L \) and therefore \(K(F_K) \subseteq K(F_L) \), hence \(G \) is \(M \)-ordered. Take a compact subset \(D \subseteq K(X) \). From properties of compact subsets of the hyperspace \(K(X) \) it follows that the set \(D = \bigcup D \subseteq X \) is compact, then by strong domination of \(X \) by \(M \) there exists a compact set \(F \in F \) such that \(D \subseteq F \). It is easy to see that \(D \subseteq K(D) \subseteq K(F) \subseteq G \). Therefore \(K(X) \) is strongly dominated by the space \(M \).

Suppose that \(K(X) \) is strongly dominated by the space \(M \). The space \(X \) is homeomorphic to the closed subspace \(F(X) \subseteq K(X) \), then from 3.3(d) of [5] it follows that \(X \) is strongly dominated by the space \(M \).

Corollary 2.10. If \(X \) is strongly dominated by a second countable space, then \(K(X) \) is strongly dominated by a second countable space and it is \(e \)-hemicompact.

Proposition 2.11. If \(f : X \rightarrow Y \) is a perfect onto map, then \(X \) is strongly dominated by a space \(M \) if and only if \(Y \) is strongly dominated by \(M \).

Proof. If \(X \) is strongly dominated by a space \(M \), then by Theorem 3.3(a) of [5] it follows that \(Y \) is strongly dominated by a space \(M \).

Let \(Y \) be strongly dominated by the space \(M \) and take \(F = \{F_K : K \in C(M)\} \subseteq C(Y) \), an \(M \)-ordered compact cover of \(Y \) such that for any compact \(B \subseteq Y \) there is \(F \in F \) such that \(B \subseteq F \). The map \(f \) is perfect, hence \(f^{-1}(F) \subseteq X \) is compact for any \(F \in F \), so we define the family

\[G = \{G_K = f^{-1}(F_K) : K \in C(M)\} \subseteq C(X). \]

If we take two subsets \(K, L \in C(M) \) such that \(K \subseteq L \), then \(F_K \subseteq F_L \) and therefore \(G_K = f^{-1}(F_K) \subseteq f^{-1}(F_L) = G_L \). Take a compact set \(A \subseteq X \) and define the compact set \(B = f(A) \). From strong domination of \(Y \) by \(M \) there exists \(F_K \in F \) such that \(B \subseteq F_K \), hence \(A \subseteq f^{-1}(f(A)) = f^{-1}(B) \subseteq f^{-1}(F_K) \subseteq G \). Therefore \(X \) is strongly dominated by \(M \).

Proposition 2.12. If the space \(X \) is Lindelöf \(p \), then it is strongly dominated by a second countable space.

Proof. There exists a second countable space \(M \) and a perfect onto map \(f : X \rightarrow M \). It is clear that \(M \) is strongly dominated by \(M \). Therefore from Proposition 2.11 it follows that \(X \) is strongly dominated by the second countable space \(M \).
For a given cardinal number \(\kappa \), let \(D(\kappa) \) be the discrete space of cardinality \(\kappa \).

Proposition 2.13. Let \(\kappa \) be an infinite cardinal. A space \(X \) is \(\kappa \)-hemicompact space if and only if it is strongly dominated by \(D(\kappa) \).

Proof. Assume that \(X \) is \(\kappa \)-hemicompact. Let \(\mathcal{H} = \{ H_\alpha : \alpha < \kappa \} \) be a family of compact subsets of \(X \) which witnesses the \(\kappa \)-hemicompactness of \(X \). The hyperspace \(C(D(\kappa)) \) consists of all the finite subsets of \(D(\kappa) \). For any compact \(K \in C(D(\kappa)) \) define \(F_K = \bigcup\{ H_\alpha : \alpha \in K \} \in C(X) \). It is easy to see that for any \(L, M \in C(D(\kappa)) \) such that \(L \subseteq M \) we have \(F_L \subseteq F_M \). Let \(B \) be a compact subset of \(X \), there exists \(\alpha < \kappa \) such that \(B \subseteq H_\alpha \), then \(B \subseteq F(\alpha) \). Therefore the family \(\mathcal{F} = \{ F_K : K \in C(D(\kappa)) \} \) is a compact cover of \(X \) which witnesses that \(X \) is strongly dominated by the space \(D(\kappa) \).

Suppose that \(X \) is a space strongly dominated by \(D(\kappa) \). The cardinality of \(C(D(\kappa)) \) is \(\kappa \), therefore \(X \) is \(\kappa \)-hemicompact.

Proposition 2.14. If \(X \) is a hemicompact space, then \(X \) and \(\mathcal{K}(X) \) are strongly dominated by a second countable space.

Proof. The space \(D(\omega) \) is second countable.

In Theorem 2.1 of [5] it was proved that in the class of Dieudonné complete spaces domination by a second countable space and the Lindelöf \(\Sigma \) property are equivalent. We will show that in the class of Lindelöf \(\Sigma \)-spaces strong domination by a second countable space and the Lindelöf \(p \) property are not equivalent. The character of \(X \) at its subspace \(A \subset X \), denoted by \(\chi(A, X) \), is the minimal of the cardinalities of all outer bases of \(A \) in \(X \). A space \(X \) is called ultracomplete if \(\chi(X, cX) \leq \omega \) for some (equivalently for any) compactification \(cX \) of \(X \) (see [13]).

Proposition 2.15. If \(X \) is an ultracomplete space without points of local compactness and \(cX \) is a compactification of \(X \), then the remainder \(R(X) = cX \setminus X \) is Lindelöf \(\Sigma \), strongly dominated by a second countable space and it is not Lindelöf \(p \).

Proof. Ponomarev and Tkachuk proved in [13] that the remainder of an ultracomplete space in any of its compactification is hemicompact. Thus the remainder \(R(X) \) is hemicompact and therefore it is a Lindelöf \(\Sigma \)-space. By Proposition 2.14 the remainder \(R(X) \) is strongly dominated by a second countable space.

The space \(X \) is not Lindelöf, because any Lindelöf ultracomplete space has points of local compactness (see [13]) and \(X \) does not have points of local compactness. The space \(R(X) \) is a dense subset of \(cX \), hence \(cX \) is also a compactification of \(R(X) \) and the remainder of \(R(X) \) in \(cX \) is \(R(R(X)) = X \). It is well known that the remainder of a Lindelöf \(p \)-space in each compactification is also Lindelöf \(p \). Therefore \(R(X) \) is not Lindelöf \(p \).

Example 2.16. i) Let us consider \(\omega_1 \) the space of all countable ordinals with its interval topology and \(\omega_1^{\omega} \) with the product topology. Then \(\omega_1^{\omega} \) is a non Lindelöf space which is strongly dominated by a second countable one.

ii) If \(c\omega_1^{\omega} \) is a compactification of \(\omega_1^{\omega} \), then \(R(\omega_1^{\omega}) = c\omega_1^{\omega} \setminus \omega_1^{\omega} \) is Lindelöf \(\Sigma \), strongly dominated by a second countable space and is not Lindelöf \(p \).

Proof. i) In Proposition 3.4 of [5] it was proved that \(\omega_1 \) is strongly dominated by a second countable space. From Theorem 3.3 of [5] it follows that \(\omega_1^{\omega} \) is strongly dominated by a second countable space. The space \(\omega_1^{\omega} \) is a non compact countably compact space and, hence, it is not Lindelöf.

ii) Buhagiar and Yoshioka proved in Theorem 4.16 of [3] that \(\omega_1^{\omega} \) is an ultracomplete space. The space \(\omega_1^{\omega} \) does not have points of local compactness. From Proposition 2.15 it follows that the remainder \(R(\omega_1^{\omega}) = c\omega_1^{\omega} \setminus \omega_1^{\omega} \) is Lindelöf \(\Sigma \), strongly dominated by a second countable space and it is not Lindelöf \(p \).

Proposition 2.17. If \(A(\kappa) \) is the one-point compactification of a discrete space of cardinality \(\kappa \geq \omega \), then \(\mathcal{K}(C_p(A(\kappa))) \) is not dominated by a second countable and \(C_p(A(\kappa)) \) is not strongly dominated by a second countable space.
Proof. The one-point compactification $A(\kappa)$ is an Eberlein compact, then $C_p(A(\kappa))$ is Lindelöf Σ. Theorem 2.1 of [5] implies that the function space $C_p(A(\kappa))$ is a Dieudonné complete and dominated by a second countable space. The hyperspace $K(C_p(A(\kappa)))$ is also Dieudonné complete (see [16]). From Proposition 2.6 it follows that $K(C_p(A(\kappa)))$ is not Lindelöf Σ. Therefore from Theorem 2.1 of [5] it follows that $K(C_p(A(\kappa)))$ is not dominated by a second countable space. From Proposition 2.9 it follows that $C_p(A(\kappa))$ is not strongly dominated by a second countable space.

Corollary 2.18. If X is a scattered compact space of weight $w(X) = \kappa \geq \mathfrak{c}$, then $K(C_p(X))$ is not dominated by a second countable space and $C_p(X)$ is not strongly dominated by a second countable space.

Proof. The hyperspace $K(C_p(A(\kappa)))$ is homeomorphic to a closed subspace of $K(C_p(X))$ (see the proof of Proposition 2.6).

Proposition 2.19. If X is strongly dominated by a second countable space, then for any $n \in \mathbb{N}$ the hyperspace $F_n(X)$ is strongly dominated by a second countable space.

Proof. From Proposition 2.9 it follows that $K(X)$ is strongly dominated by a second countable space. The class of spaces strongly dominated by a second countable space is closed under closed subspaces. Therefore for any $n \in \mathbb{N}$ the hyperspace $F_n(X)$ is strongly dominated by a second countable space.

Domination by second countable spaces is stable under countable unions (see 2.1(d) of [5]). The following example shows that the same conclusion is not true in the class of spaces strongly dominated by second countable ones.

Example 2.20. Let $\kappa \geq \mathfrak{c}$. If X is a compact space with more than one point, then $\sigma(X^{\kappa})$ is σ-compact and it is not κ-hemicompact (see Proposition 2.3). Therefore $\sigma(X^{\kappa})$ is a countable union of spaces strongly dominated by second countable ones, thus from Corollary 2.1 it follows that $\sigma(X^{\kappa})$ is not strongly dominated by a second countable space, because it is not \mathfrak{c}-hemicompact.

The second part of Proposition 2.17 and the second part of Corollary 2.18 are related to Problem 4.11 of [5]. The anonymous referee informed the authors that a complete solution of that problem was obtained by Gartidse and Mamatelashvili in [10] and independently by Guerrero Sánchez in [8].

We conclude with some questions related to this work.

Question 2.21. If X is a scattered Eberlein compact space, is then $K(X)$ semi-Eberlein compact?

Question 2.22. Is it true in ZFC that the hyperspace $K(C_p(A(\omega_1)))$ is not Lindelöf Σ?

Question 2.23. Is it true in ZFC that the hyperspace $K(C_p(A(\omega_1)))$ is not dominated by a second countable space?

A space X is of countable type if for any compact $F \subset X$ there exists a compact subspace $K \subset X$ of countable character such that $A \subset X$. It is worth to mention that any Čech complete space is of countable type.

Question 2.24. If X is a σ-compact space of countable type, is then X strongly dominated by a second countable space?

Acknowledgement: The authors thank the anonymous referee for his/her comments and suggestions.

The authors acknowledge the support from UACM/SECITI (Convenio 060/2013, Proyecto PI2013-12).

References

[13] Ponomarev V., Tkachuk V., The countable character of \(\beta X \) compared with the countable character of the diagonal in \(X \times X \), Vestnik Mosk. Univ., 1987, 42(5), 16–19 (in Russian)