Research Article

Khaledoun Al-Zoubi*, Imad Jaradat, and Mohammed Al-Dolat

On graded P-compactly packed modules

DOI 10.1515/math-2015-0045
Received March 29, 2015; accepted July 13, 2015.

Abstract: Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded P-compactly packed modules and we give a number of results concerning such graded modules. In fact, our objective is to investigate graded P-compactly packed modules and examine in particular when graded R-modules are P-compactly packed. Finally, we introduce the concept of graded finitely P-compactly packed modules and give a number of its properties.

Keywords: Graded primary submodules, Graded P-compactly packed modules, Graded finitely P-compactly packed modules

MSC: 13A02, 16W50

1 Introduction and Preliminaries

Graded primary ideals in a commutative graded ring have been introduced and studied by M. Refai and K. Al-Zoubi in [8]. Graded primary submodules of graded modules over graded commutative rings have been studied in [3, 4]. Graded primary radical of a graded submodule over graded commutative rings have been introduced and studied by K. Al-Zoubi in [1]. Also, the concept of graded compactly packed modules was introduced by F. Farzalipour and P. Ghiassvand in [4]. Here, we generalize this concept to the concept of graded P-compactly packed modules and give a number of its properties. We also introduce the concept of graded finitely P-compactly packed modules and give some results about it.

Before we state some results, let us introduce some notations and terminologies. Let G be a group with identity e and R be a commutative ring with identity 1_R. Then R is a G-graded ring if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. We denote this by (R, G) (see [6].) The elements of R_g are called to be homogeneous of degree g where the R_g’s are additive subgroups of R indexed by the elements $g \in G$. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_g$, where x_g is the component of x in R_g. Moreover, $h(R) = \bigcup_{g \in G} R_g$. Let I be an ideal of R. Then I is called a graded ideal of (R, G) if $I = \bigoplus_{g \in G} (I \cap R_g)$. Thus, if $x \in I$, then $x = \sum_{g \in G} x_g$ with $x_g \in I$. An ideal of a G-graded ring need not be G-graded (see [6].)

Let R be a G-graded ring and M an R-module. We say that M is a G-graded R-module (or graded R-module) if there exists a family of subgroups $\{M_g\}_{g \in G}$ of M such that $M = \bigoplus_{g \in G} M_g$ (as abelian groups) and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. Here, $R_g M_h$ denotes the additive subgroup of M consisting of all finite sums of elements $r_g s_h$ with $r_g \in R_g$ and $s_h \in M_h$. Also, we write $h(M) = \bigcup_{g \in G} M_g$ and the elements of $h(M)$ are called to be homogeneous.

*Corresponding Author: Khaledoun Al-Zoubi: Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan, E-mail: kazoobi@just.edu.jo
Imad Jaradat: Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan
Mohammed Al-Dolat: Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan

© 2015 Khaledoun Al-Zoubi et al., licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
Let \(M = \bigoplus_{g \in G} M_g \) be a graded \(R \)-module and \(N \) a submodule of \(M \). Then \(N \) is called a graded submodule of \(M \) if \(N = \bigoplus_{g \in G} N_g \) where \(N_g = N \cap M_g \) for \(g \in G \). In this case, \(N_g \) is called the \(g \)-component of \(N \) (see [6].)

Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. The graded radical of a graded ideal \(I \), denoted by \(Gr(I) \), is the set of all \(x = \sum_{g \in G} x_g \in R \) such that for each \(g \in G \) there exists \(n_g > 0 \) with \(x_g^{n_g} \in I \). Note that, if \(r \) is a homogeneous element, then \(r \in Gr(I) \) if and only if \(r^n \in I \) for some \(n \in \mathbb{N} \). A proper graded ideal \(P \) of \(R \) is said to be graded primary ideal if whenever \(r, s \in h(R) \) with \(rs \in P \), then either \(r \in P \) or \(s \in Gr(P) \) (see [8].) A proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to be graded prime submodule if whenever \(r \in h(R) \) and \(m \in h(M) \) with \(rm \in N \), then either \(r \in (N :_R M) = \{ r \in R : rM \subseteq N \} \) or \(m \in N \). A proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to be graded primary submodule if whenever \(r \in h(R) \) and \(m \in h(M) \) with \(rm \in N \), then either \(m \in N \) or \(r \in Gr((N :_R M)) \) (see [7].) The graded primary and primary submodules are different concepts (see [8, Example 1.6].) The graded radical of a graded submodule \(N \) of a graded \(R \)-module \(M \), denoted by \(Gr_M(N) \), is defined to be the intersection of all graded primary submodules of \(M \) containing \(N \). If \(N \) is not contained in any graded prime submodule of \(M \), then \(Gr_M(N) = N \) (see [7].) A graded \(R \)-module \(M \) is called graded finitely generated if there exist \(x_{g_1}, x_{g_2}, \ldots, x_{g_n} \in h(M) \) such that \(M = Rx_{g_1} + \cdots + Rx_{g_n} \). A graded \(R \)-module \(M \) is called graded cyclic if \(M = Rm_g \) where \(m_g \in h(M) \).

2 Graded \(P \)-compactly packed modules

In this section, we define the graded \(P \)-compactly packed modules and give a number of its properties. We also find the necessary and sufficient conditions for any graded \(R \)-module \(M \) to be graded \(P \)-compactly packed.

Definition 2.1. Let \(R \) be a \(G \)-graded ring, \(M \) a graded \(R \)-module and \(N \) a proper graded submodule of \(M \). \(N \) is called graded \(P \)-compactly packed if whenever \(N \) is contained in the union of a family of graded primary submodules of \(M \), \(N \) is contained in one of the graded primary submodules of the family. \(M \) is called graded \(P \)-compactly packed if every proper graded submodule of \(M \) is graded \(P \)-compactly packed.

Lemma 2.2 ([4, Lemma 2.1]). Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. Then the following hold:

(i) If \(I \) and \(J \) are graded ideals of \(R \), then \(I + J \) and \(I \cap J \) are graded ideals.

(ii) If \(N \) is a graded submodule of \(M \), \(r \in h(R) \), \(x \in h(M) \) and \(I \) is a graded ideal of \(R \), then \(Rx \), \(IN \) and \(rN \) are graded submodules of \(M \).

(iii) If \(N \) and \(K \) are graded submodules of \(M \), then \(N + K \) and \(N \cap K \) are also graded submodules of \(M \) and \((N :_R M) = \{ r \in R : rM \subseteq N \} \) is a graded ideal of \(R \).

(iv) Let \(\{N_\lambda\} \) be a collection of graded submodules of \(M \). Then \(\sum_{\lambda} N_\lambda \) and \(\cap_{\lambda} N_\lambda \) are graded submodules of \(M \).

The graded primary radical of a graded submodule \(N \) of a graded \(R \)-module \(M \), denoted by \(P-Gr_M(N) \), is defined to be the intersection of all graded primary submodules of \(M \) containing \(N \). Should there be no graded primary submodule of \(M \) containing \(N \), then we put \(P-Gr_M(N) = M \). It is easy to see that \(P-Gr_M(N) \) is a graded submodule of \(M \) containing \(N \). We say \(N \) is a graded primary radical submodule if \(P-Gr_M(N) = N \) (see [1, Definition 2.2].)

Theorem 2.3. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. Then the following statements are equivalent:

(i) \(M \) is a graded \(P \)-compactly packed.

(ii) For each proper graded submodule \(N \) of \(M \), there exists \(n_g \in N \cap h(M) \) such that \(P-Gr_M(N) = P-Gr_M(Rn_g) \).

(iii) For each proper graded submodule \(N \) of \(M \), if \(\{P_\alpha\}_{\alpha \in \Delta} \) is a family of graded submodules of \(M \) and \(N \subseteq \bigcup_{\alpha \in \Delta} P_\alpha \), then \(N \subseteq P-Gr_M(P_\beta) \) for some \(\beta \in \Delta \).

(iv) For each proper graded submodule \(N \) of \(M \), if \(\{P_\alpha\}_{\alpha \in \Delta} \) is a family of graded primary radical submodules of \(M \) and \(N \subseteq \bigcup_{\alpha \in \Delta} P_\alpha \), then \(N \subseteq P_\beta \) for some \(\beta \in \Delta \).
Proof. (i)⇒(ii) Assume (i) holds and let \(N \) be a proper graded submodule of \(M \). By [1, Theorem 2.4], \(PGR_M (RN_g) \subseteq PGR_M (N) \) for each \(n_g \in N \cap h(M) \). Now, suppose that \(PGR_M (N) \not\subseteq PGR_M (RN_g) \) for each \(n_g \in N \cap h(M) \). Then for each \(n \in N \cap h(M) \) there exists a graded primary submodule \(P_{n_g} \) for which \(RN_g \subseteq P_{n_g} \) and \(N \not\subseteq P_{n_g} \). But \(N = \cup_{n_g \in N} Rn_g \subseteq \cup_{n_g \in N} P_{n_g} \), that is \(M \) is not \(P \)-compactly packed, a contradiction.

(ii)⇒(iii) Assume (ii) holds. Let \(N \) be a proper graded submodule of \(M \) and let \(\{ P_{\alpha} \}_{\alpha \in \Delta} \) be a family of graded submodules of \(M \) such that \(N \subseteq \cup_{\alpha \in \Delta} P_{\alpha} \) by (ii) there exists \(n_g \in N \cap h(M) \) such that \(PGR_M (N) = PGR_M (RN_g) \). Hence \(n_g \in \cup_{\alpha \in \Delta} P_{\alpha} \) and so \(n_g \in P_{\beta} \) for some \(\beta \in \Delta \). Hence \(RN_g \subseteq P_{\beta} \) and by [1, Theorem 2.4], we conclude that \(N \subseteq PGR_M (N) = PGR_M (RN_g) \subseteq PGR_M (P_{\beta}) \).

(iii)⇒(iv) Assume (iii) holds. Let \(N \) be a proper graded submodule of \(M \) and let \(\{ P_{\alpha} \}_{\alpha \in \Delta} \) be a family of graded primary radical submodules of \(M \) such that \(N \subseteq \cup_{\alpha \in \Delta} P_{\alpha} \) by (iii) there exists \(\beta \in \Delta \) such that \(N \subseteq PGR_M (P_{\beta}) \).

Since \(P_{\beta} \) is graded primary radical submodule, \(P_{\beta} = PGR_M (P_{\beta}) \). Hence \(N \subseteq \cup_{\alpha \in \Delta} P_{\alpha} = \cup_{\alpha \in \Delta} PGR_M (P_{\beta}) \). By (iv), there exists \(\beta \in \Delta \) such that \(N \subseteq PGR_M (P_{\beta}) = P_{\beta} \). Therefore, \(M \) is graded \(P \)-compactly packed.

\[\square \]

Lemma 2.4. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. If every proper graded submodule of \(M \) is graded cyclic, then \(M \) is graded \(P \)-compactly packed.

Proof. Let \(N \) be a proper graded submodule of \(M \) and let \(\{ P_{\alpha} \}_{\alpha \in \Delta} \) be a family of graded primary submodules of \(M \) such that \(N \subseteq \cup_{\alpha \in \Delta} P_{\alpha} \). Since \(N \) is a graded cyclic, \(N = Rn_g \) for some \(n_g \in N \cap h(M) \). Since \(n_g \in N \subseteq \cup_{\alpha \in \Delta} P_{\alpha} \), \(n_g \in P_{\beta} \) for some \(\beta \in \Delta \) it follows that \(N = Rn_g \subseteq P_{\beta} \). Therefore \(M \) is graded \(P \)-compactly packed.

A graded \(R \)-module \(M \) is said to be with graded primary decomposition if each of its proper graded submodules is an intersection, possibly infinite, of graded primary submodules of \(M \).

Lemma 2.5. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. \(M \) is a graded module with graded primary decomposition if and only if \(PGR_M (N) = N \) for all graded submodules \(N \) of \(M \).

Proof. Let \(N \) be a proper graded submodule of \(M \), then \(N \) has a graded primary decomposition \(N = \cap_{\alpha \in \Delta} P_{\alpha} \). Each of \(P_{\alpha} \) is containing \(N \). Since \(PGR_M (N) \) is the intersection of all graded primary submodules containing \(N \), \(PGR_M (N) \subseteq N \) and it is clear that \(N \subseteq PGR_M (N) \). Thus \(PGR_M (N) = N \). Conversely, assume that \(PGR_M (N) = N \) for all graded submodules \(N \) of \(M \). Then every proper graded submodule of \(M \) is an intersection of graded primary submodules of \(M \). Hence \(M \) is a graded module with graded primary decomposition.

\[\square \]

Theorem 2.6. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module with graded primary decomposition. Then the following statements are equivalent:

(i) \(M \) is a graded \(P \)-compactly packed.

(ii) Every proper graded submodule of \(M \) is graded cyclic.

Proof. (i)⇒(ii) Assume (i) holds and let \(N \) be a proper graded submodule of \(M \). By Theorem 2.3, there exists \(n_g \in N \cap h(M) \) such that \(PGr(N) = PGr(Rn_g) \) but \(M \) is graded module with graded primary decomposition, then by previous Lemma \(N = Rn_g \). Thus \(N \) is graded cyclic.

(ii)⇒(i) Lemma 2.4.

Recall that a proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to be graded maximal submodule if there is no graded submodule \(K \) of \(M \) such that \(N \not\subseteq K \not\subseteq M \) (see [2]).

Theorem 2.7. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. If \(M \) is graded \(P \)-compactly packed which has at least one graded maximal submodule, then \(M \) satisfies the ascending chain condition on graded primary radical submodules.
Proof. Let \(P_1 \subseteq P_2 \subseteq P_3 \subseteq \cdots \) be an ascending chain of graded primary radical submodules of \(M \). If \(P_k = M \) for some \(k \), then the result follows immediately, so assume that none of \(P_k \)'s is \(M \) and let \(P = \bigcup_{i=1}^{\infty} P_i \). We claim that \(P \) is a proper graded submodule of \(M \). Assume on contrary that \(P = M \) and let \(L \) be a graded maximal submodule of \(M \). Then \(L \subseteq \bigcup_{i=1}^{\infty} P_i \). Since \(M \) is graded \(P \)-compactly packed, by Theorem 2.3 \(L \subseteq P_k \) for some \(k \). Hence \(L = P_k \) and so \(P_k \) is graded maximal. Hence \(P_k = P_i \) for all \(i \geq k \) it follows that \(P_k = \bigcup_{i=1}^{\infty} P_i = M \), which is impossible. Thus \(P \) is a proper graded submodule of \(M \). Since \(M \) is graded \(P \)-compactly packed, by Theorem 2.3 \(P \subseteq P_s \) for some \(s \) and hence \(P_s = P_i \) for all \(i \geq s \). Therefore the ascending chain condition is satisfied on graded primary radical submodules.

By [2, Lemma 2.7], every graded finitely generated module over graded ring has a graded proper maximal submodule. Then we have the following Corollary.

Corollary 2.8. Let \(R \) be a \(G \)-graded ring and \(M \) a graded finitely generated \(R \)-module. If \(M \) is graded \(P \)-compactly packed, then \(M \) satisfies the ascending chain condition on graded primary radical submodules.

Lemma 2.9. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. If \(M \) satisfies the ascending chain condition on graded primary radical submodules, then every graded primary radical submodule is the graded primary radical of a graded finitely generated submodule.

Proof. Assume that there exists a graded primary radical \(P \) which is not graded primary radical of a graded finitely generated submodule. Let \(n_1 \in P \cap h(M) \) and let \(P_1 = P.GR(M)(n_1) \). Then \(P_1 \subsetneq P \). Hence there exists \(n_2 \in (P \cap h(M)) - P_1 \). Let \(P_2 = P.GR(M)(n_1 - n_2) \). Then \(P_1 \subsetneq P_2 \subsetneq P \) and hence there exist \(n_3 \in (P \cap h(M)) - P_2 \) etc. This gives an ascending chain of graded primary radical submodules \(P_1 \subsetneq P_2 \subsetneq P_3 \subsetneq \cdots \) which is a contradiction.

Theorem 2.10. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module such that every graded finitely generated submodule of \(M \) is graded cyclic. If \(M \) satisfies the ascending chain condition on graded primary radical submodules, then \(M \) is a graded \(P \)-compactly packed.

Proof. Let \(N \) be a proper graded submodule of \(M \). By Lemma 2.9, there exists a graded finitely generated submodule \(P \) of \(M \) such that \(P.GR(M)(N) = P.GR(M)(P) \). By our assumption we conclude that \(P \) is a graded cyclic, it follows that there exists \(n_g \in N \cap h(M) \) such that \(P = Rn_g \). By Theorem 2.3, \(M \) is a graded \(P \)-compactly packed.

Let \(M \) and \(M' \) be two graded \(R \)-modules. A homomorphism of graded \(R \)-modules \(\varphi : M \to M' \) is a homomorphism of \(R \)-modules verifying \(\varphi(M_g) \subseteq M'_g \) for every \(g \in G \).

Lemma 2.11. Let \(R \) be a \(G \)-graded ring and \(M, M' \) be two graded \(R \)-modules and \(\varphi : M \to M' \) be an epimorphism of graded modules. If \(M \) is a graded \(P \)-compactly packed, then so is \(M' \).

Proof. Assume that \(M \) is a graded \(P \)-compactly packed. Let \(N' \) be a proper graded submodule of \(M' \) and let \(\{ P'_\alpha \}_{\alpha \in \Delta} \) be a family of graded primary submodules of \(M' \) such that \(N' \subseteq \bigcup_{\alpha \in \Delta} P'_\alpha \). Since \(\varphi \) is an epimorphism of graded modules, \(\varphi^{-1}(N') \subseteq \bigcup_{\alpha \in \Delta} \varphi^{-1}(P'_\alpha) \). Hence \(\varphi^{-1}(N') \subseteq \bigcup_{\alpha \in \Delta} \varphi^{-1}(P'_\alpha) \). By [1, Lemma 2.14], \(\varphi^{-1}(P'_\alpha) \) is a graded primary submodule of \(M \) for each \(\alpha \in \Delta \). Since \(M \) is a graded \(P \)-compactly packed, there exists \(\beta \in \Delta \) such that \(\varphi^{-1}(N') \subseteq \varphi^{-1}(P'_\beta) \). Thus \(N' \subseteq P'_\beta \) for some \(\beta \in \Delta \). Therefore \(M' \) is a graded \(P \)-compactly packed.

Theorem 2.12. Let \(R \) be a \(G \)-graded ring and \(M, M' \) be two graded \(R \)-modules and \(\varphi : M \to M' \) be an epimorphism of graded modules such that \(\text{Ker}(\varphi) \subseteq P.GR(M)\{0\} \). Then \(M \) is a graded \(P \)-compactly packed if and only if \(M' \) is a graded \(P \)-compactly packed.

Proof. \((\Rightarrow) \) Lemma 2.11.

\((\Leftarrow)\) Assume that \(M' \) is a graded \(P \)-compactly packed. Let \(N \) be a proper graded submodule of \(M \) and let \(\{ P_\alpha \}_{\alpha \in \Delta} \) be a family of graded primary submodules of \(M \) such that \(N \subseteq \bigcup_{\alpha \in \Delta} P_\alpha \). Then \(\varphi(N) \subseteq \varphi(\bigcup_{\alpha \in \Delta} P_\alpha) \).
and hence $\varphi(N) \subseteq \bigcup_{\alpha \in \Delta} \varphi(P_{\alpha})$. Since $\ker(\varphi) \subseteq P_{\alpha}$ for each $\alpha \in \Delta$, by [1, Lemma 2.15], $\varphi(P_{\alpha})$ is a graded primary submodule of M'. Since M' is a graded P-compactly packed, $\varphi(N) \subseteq \varphi(P_{\beta})$ for some $\beta \in \Delta$. Now, we show that $N \subseteq P_{\beta}$. Let $n = \sum_{g \in G} n_g \in N$. For $g \in G$, $n_g \in N$ and so $\varphi(n_g) \in \varphi(N) \subseteq \varphi(P_{\beta})$. Hence there exists $t \in P_{\beta} \cap \ker(\varphi)$ such that $\varphi(n_g) = \varphi(t)$. Hence $n_g - t \in \ker(\varphi) \subseteq P_{\beta}$, it follows that $n_g \in P_{\beta}$. So $N \subseteq P_{\beta}$. Therefore M is a graded P-compactly packed.

Let R be a G-graded ring and M a graded R-module and $S \subseteq h(R)$ a multiplicatively closed subset of R. A non empty subset S^* of $h(M)$ is said to be graded S-closed if $se \in S^*$ for every $s \in S$ and $e \in S^*$ (see [4, Definition 2.11].)

Lemma 2.13. Let $S \subseteq h(R)$ be a multiplicatively closed subset of graded ring R and $S^* \subseteq h(M)$ be a graded S-closed of a graded R-module M. If N is a graded submodule of M contained in $M - S^*$, then $Gr((N :_R M)) \cap S = \Phi$.

Proof. Assume that $Gr((N :_R M)) \cap S \neq \Phi$ and let $r_k \in Gr((N :_R M)) \cap S$. Then $r_k^k M \subseteq N$ for some $k \in N$ and for any $e \in S^*$, $r_k^k e \in S^* \cap N$, which is contradiction with $N \subseteq M - S^*$.

Recall that a graded R-module M is called graded multiplication if for each graded submodule N of M, $N = IM$ for some graded ideal I of R. One can easily show that if N is a graded submodule of a graded multiplication module M, then $N = (N :_R M)$, (see [7, Definition 2.1]). Also, a proper graded ideal P of a G-graded ring R graded P-compactly packed if whenever P is contained in the union of a family of graded primary ideals of R, P is contained in one of the graded primary ideals of the family. A graded ring R is said to be graded P-compactly packed if every proper graded ideals of R is graded P-compactly packed.

Theorem 2.14. Let R be a G-graded ring, M a graded multiplication R-module such that $GrM(N) = N$ for all graded submodules N of M. If R is a graded P-compactly packed and $M \neq \bigcup_{\alpha \in \Delta} P$ for each family $\{P_{\alpha}\}_{\alpha \in \Delta}$ of graded primary submodules of M, then M is graded P-compactly packed.

Proof. Let N be a proper graded submodule of M and let $\{P_{\alpha}\}_{\alpha \in \Delta}$ be a family of graded primary radical submodules of M such that $N \subseteq \bigcup_{\alpha \in \Delta} P_{\alpha}$. Put $S^* = h(M) - \bigcup_{\alpha \in \Delta} P_{\alpha}$. Then S^* is graded S-closed of M where $S = h(R) - \bigcup_{\alpha \in \Delta} Gr((P_{\alpha} :_R M))$. Since $N \subseteq S^* = \Phi$, by Lemma 2.13, $Gr((N :_R M)) \cap S = \Phi$. Hence $Gr((N :_R M)) \subseteq \bigcup_{\alpha \in \Delta} Gr((P_{\alpha} :_R M))$. By [1, Lemma 2.7], $Gr((P_{\alpha} :_R M))$ is graded primary ideals of R for all α. Since R is a graded P-compactly packed, $Gr((N :_R M)) \subseteq Gr((P_{\beta} :_R M))$ for some β. By [7, Theorem 9], $N = GrM(N) = Gr((N :_R M))M \subseteq Gr((P_{\beta} :_R M))M = GrM(P_{\beta}) = P_{\beta}$. Therefore, M is graded P-compactly packed.

3 Graded finitely P-compactly packed modules

In this section, we define the graded finitely P-compactly packed modules and give a number of its properties. Also, we find the conditions that make graded finitely P-compactly packed modules graded P-compactly packed.

Definition 3.1. Let R be a G-graded ring and M a graded R-module. A proper graded submodule N of M is called graded finitely P-compactly packed if for each family $\{P_{\alpha}\}_{\alpha \in \Delta}$ of graded primary submodules of M with $N \subseteq \bigcup_{\alpha \in \Delta} P_{\alpha}$, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $N \subseteq \bigcup_{i=1}^{n} P_{\alpha_i}$. A graded module M is called graded finitely P-compactly packed if every proper graded submodule of M is graded finitely P-compactly packed.

It is clear that if M is graded P-compactly packed, then M is graded finitely P-compactly packed.

Theorem 3.2. Let R be a G-graded ring and M a graded R-module in which every finite family of graded primary submodules of M is totally ordered by inclusion. If M is graded finitely P-compactly packed, then M is graded P-compactly packed.
Proof. Let N be a proper graded submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary submodules of M such that $N \subseteq \cup_{\alpha \in \Delta} P_\alpha$. Since M is graded finitely P-compactly packed, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $N \subseteq \cup_{i=1}^n P_{\alpha_i}$. Since $\{P_{\alpha_i}\}_{i=1}^n$ is totally ordered by inclusion, there exists $\beta \in \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ such that $\cup_{i=1}^n P_{\alpha_i} = P_\beta$. Thus M is graded P-compactly packed.

Let N_1, N_2, \ldots, N_n be graded submodules of a graded R-module M. We call a covering $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$ efficient if N is not contained in the union of any $n-1$ of the graded submodules N_1, N_2, \ldots, N_n. Any covering of a union of graded submodules can be reduced to an efficient one, called an efficient reduction, by deleting any unnecessary terms, (see [3]).

Theorem 3.3. Let R be a G-graded ring and M a graded multiplication R-module such that $Gr_M(N) = N$ for all graded submodules N of M. If M is graded finitely P-compactly packed, then M is graded P-compactly packed.

Proof. Let N be an efficient graded primary submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary submodules of M such that $N \subseteq \cup_{\alpha \in \Delta} P_\alpha$. Since M is graded finitely P-compactly packed, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $N \subseteq \cup_{i=1}^n P_{\alpha_i}$; we may assume that the covering is efficient. We show that $Gr((P_j :_R M)) \subseteq Gr((P_k :_R M))$ whenever $j \neq k$. Assume on contrary that $Gr((P_j :_R M)) \not\subseteq Gr((P_k :_R M))$ for some $j \neq k$. By [7, Theorem 9], $P_j = Gr_M(P_j) = Gr((P_j :_R M))M \subseteq Gr((P_k :_R M))M = Gr_M(P_k) = P_k$, a contradiction. Thus $Gr((P_j :_R M)) \not\subseteq Gr((P_k :_R M))$ whenever $j \neq k$. By [3, Theorem 2.6], $N \subseteq P_\beta$ for some β. Therefore M is graded P-compactly packed.

Theorem 3.4. Let R be a G-graded ring and M a graded R-module. If M is graded finitely P-compactly packed which has at least one graded maximal submodule, then M satisfies the ascending chain condition on graded primary submodules.

Proof. Let $P_1 \subseteq P_2 \subseteq P_3 \subseteq \cdots$ be an ascending chain of graded primary submodules of M and let $P = \cup_{i=1}^\infty P_i$. We claim that P is a proper graded submodule of M. Assume on contrary that $P = M$ and let L be a graded maximal submodule of M. Then $L \subseteq \cup_{i=1}^\infty P_i$. Since M is graded finitely P-compactly packed, there exist m_1, m_2, \ldots, m_k such that $L \subseteq \cup_{j=1}^k P_{m_j} = P_m$ where $m = \max\{m_1, m_2, \ldots, m_k\}$. Since L is graded maximal, $L = P_m$. Hence P_m is graded maximal, it follows that $P_i = P_m$ for all $i \geq m$. Thus $P_m = \cup_{i=1}^\infty P_i = M$ which is impossible. Thus P is a graded proper submodule of M. Since M is graded finitely P-compactly packed, there exist t_1, t_2, \ldots, t_n such that $P \subseteq \cup_{i=1}^n P_{t_i} = P_t$ where $t = \max\{t_1, t_2, \ldots, t_n\}$. Hence $P_i \subseteq P_t$ for all i, thus $P_i = P_t$ for all $i \geq t$. Then the ascending chain condition is satisfied on graded primary submodules.

Acknowledgement: The authors wish to thank sincerely the referees for their valuable comments and suggestions.

References

[492] K. Al-Zoubi et al.