Open Mathematics

Research Article

Tomonari Suzuki*, Badriah Alamri, and Misako Kikkawa

Only 3-generalized metric spaces have a compatible symmetric topology

DOI 10.1515/math-2015-0048
Received January 27, 2015; accepted August 3, 2015.

Abstract: We prove that every 3-generalized metric space is metrizable. We also show that for any \(v \) with \(v \geq 4 \), not every \(v \)-generalized metric space has a compatible symmetric topology.

Keywords: \(v \)-generalized metric space, Metrizability, Topology, Symmetrizable, Semimetrizable

MSC: 54E99

1 Introduction

Throughout this paper we denote by \(\mathbb{N} \) the set of all positive integers.

In 2000, Branciari in [2] introduced the following, very interesting concept. See also [1, 4–6] and others.

Definition 1.1 (Branciari [2]). Let \(X \) be a set, let \(d \) be a function from \(X \times X \) into \([0, \infty)\) and let \(v \in \mathbb{N} \). Then \((X, d) \) is said to be a \(v \)-generalized metric space if the following hold:

(N1) \(d(x, y) = 0 \) iff \(x = y \) for any \(x, y \in X \).
(N2) \(d(x, y) = d(y, x) \) for any \(x, y \in X \).
(N3) \(d(x, y) \leq d(x, u_1) + d(u_1, u_2) + \cdots + d(u_v, y) \) for any \(x, u_1, u_2, \ldots, u_v, y \in X \) such that \(x, u_1, u_2, \ldots, u_v, y \) are all different.

To be precise, we give some definitions.

Definition 1.2. Let \((X, d) \) be a \(v \)-generalized metric space. Then \(X \) is called metrizable iff there exists a metric \(\rho \) on \(X \) such that

\[
\lim_{\alpha} d(x, x_\alpha) = 0 \quad \text{and} \quad \lim_{\alpha} \rho(x, x_\alpha) = 0
\]

are equivalent for any net \(\{x_\alpha\} \) in \(X \) and \(x \in X \).

Definition 1.3. Let \(X \) be a topological space with topology \(\tau \). Let \(d \) be a function from \(X \times X \) into \([0, \infty)\) satisfy (N1)–(N3) with some \(v \in \mathbb{N} \). Then \(\tau \) is compatible with \(d \) iff the following are equivalent for any net \(\{x_\alpha\} \) in \(X \) and \(x \in X \):

\[\begin{align*}
&\lim_{\alpha} d(x, x_\alpha) = 0. \\
&\{x_\alpha\} \text{ converges to } x \text{ in } \tau.
\end{align*}\]

*Corresponding Author: Tomonari Suzuki: Department of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan, and Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, E-mail: suzuki-t@mns.kyutech.ac.jp
Badriah Alamri: Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, E-mail: baalamri@kau.edu.sa
Misako Kikkawa: Department of Mathematics, Faculty of Science, Saitama University, Sakura, Saitama 338-8570, Japan, E-mail: mi-sa-ko-kikkawa@jupiter.sanet.ne.jp
Remark. It is obvious that there exists at most one topology which is compatible with d. We sometimes say that the topology τ is a compatible symmetric topology.

It is obvious that (X, d) is a metric space if and only if (X, d) is a 1-generalized metric space. That is, we can tell that every 1-generalized metric space is metrizable. Of course, this statement is trivial.

Very recently, in [6], we found that not every 2-generalized metric space has a compatible symmetric topology.

Motivated by these facts, in this paper, we prove that every 3-generalized metric space is metrizable. Thus, every 3-generalized metric space has a compatible symmetric topology. We also show that for any v with $v \geq 4$, not every v-generalized metric space has a compatible symmetric topology. Therefore we can tell that only 1- and 3-generalized metric spaces always have a compatible symmetric topology.

2 Metrization

In this section, we prove that every 3-generalized metric space (X, d) is metrizable.

Lemma 2.1. Let (X, d) be a 3-generalized metric space. Let $\varepsilon > 0$ and let $x, u_1, u_2, v_1, v_2, y \in X$ such that x, u_j, v_j, y ($j = 1, 2$) are all different and

\[d(x, u_1) < \varepsilon, \quad d(x, u_2) < \varepsilon, \quad d(u_1, v_1) < \varepsilon, \quad d(u_2, v_2) < \varepsilon, \quad d(v_1, y) < \varepsilon. \]

Then $d(x, y) < 7\varepsilon$ holds.

Proof. Since

\[d(v_1, v_2) \leq d(v_1, u_1) + d(u_1, x) + d(x, u_2) + d(u_2, v_2) < 4\varepsilon, \]

we have

\[d(x, y) \leq d(x, u_2) + d(u_2, v_2) + d(v_2, v_1) + d(v_1, y) < 7\varepsilon \]

by (N3). \(\square\)

Theorem 2.2. Let (X, d) be a 3-generalized metric space. Define a function ρ from $X \times X$ into $[0, \infty)$ by

\[\rho(x, y) = \inf \left\{ \sum_{j=0}^{n} d(u_j, u_{j+1}) : n \in \mathbb{N} \cup \{0\}, u_0 = x, u_1, \ldots, u_n \in X, u_{n+1} = y \right\}. \]

Then (X, ρ) is a metric space; and for every $x \in X$ and for every net $\{x_\alpha\}_{\alpha \in D}$ in X, $\lim_{\alpha} d(x, x_\alpha) = 0$ if and only if $\lim_{\alpha} \rho(x, x_\alpha) = 0$.

Proof. We first show that (X, ρ) is a metric space, that is, we show the following:

(D1) $\rho(x, y) \geq 0$, $\rho(x, y) = 0$ iff $x = y$.

(D2) $\rho(x, y) = \rho(y, x)$.

(D3) $\rho(x, z) \leq \rho(x, y) + \rho(y, z)$.

(D2) and (D3) are obvious. We shall show (D1). It is also obvious that $\rho(x, y) \geq 0$; and $\rho(x, y) = 0$ if $x = y$.

Before proving that $\rho(x, y) = 0$ implies $x = y$, we show that we can rewrite ρ as follows:

\[\rho(x, y) = \min \left\{ d(x, y), \inf \left\{ d(x, u) + d(u, y) : u \notin \{x, y\} \right\}, \inf \left\{ d(x, u) + d(u, v) + d(v, y) : u, v \notin \{x, y\}, u \neq v \right\} \right\}. \]

In the case where $x = y$, the left hand side and right hand side are obviously 0. We consider the other case, where $x \neq y$. Let $n \in \mathbb{N} \cup \{0\}$ and $u_0(= x), u_1, \cdots, u_{n+1}(= y) \in X$. If $u_k = u_\ell$ for some k, ℓ with $k < \ell$, then

\[\sum_{j=0}^{n} d(u_j, u_{j+1}) \geq \sum_{j=0}^{k-1} d(u_j, u_{j+1}) + \sum_{j=\ell}^{n} d(u_j, u_{j+1}) \]
obviously holds, where \(\sum_{j=0}^{n-1} d(u_{j},u_{j+1}) = \sum_{j=n+1}^{n} d(u_{j},u_{j+1}) = 0\). So we only consider the case where \(u_0, \ldots, u_{n+1}\) are all different. If \(n \geq 3\), then we have by (N3)

\[
\sum_{j=0}^{n} d(u_{j},u_{j+1}) \geq d(u_0, u_4) + \sum_{j=4}^{n} d(u_{j},u_{j+1}).
\]

So we only consider the case where \(n < 3\). Thus, we have shown (1). Let us prove that \(\rho(x, y) = 0\) implies \(x = y\). We assume \(\rho(x, y) = 0\). Arguing by contradiction, we assume \(x \neq y\). By (1), we only consider the following case:

- There exists a sequence \(\{u_n\}\) in \(X \setminus \{x, y\}\) such that \(\lim_n \{d(x, u_n) + d(u_n, y)\} = 0\).
- There exist sequences \(\{u_{n_1}\} \) and \(\{v_{n_1}\} \) in \(X\) such that and \(x, u_{n_1}, v_{n_1}\) and \(y\) are all different for any \(n \in \mathbb{N}\); and \(\lim_n \{d(x, u_n) + d(u_n, v_n) + d(v_n, y)\} = 0\).

In the first case, since \(\lim_n d(x, u_n) = 0\), without loss of generality, we may assume that \(\{d(x, u_n)\}\) is strictly decreasing, which implies that \(u_n\) are all different. We have by (N3)

\[
\lim_{n \to \infty} d(u_n, u_{n+1}) \leq \lim_{n \to \infty} \left(d(u_n, x) + d(x, u_{n+2}) + d(u_{n+2}, y) + d(y, u_{n+1}) \right) = 0 \quad \text{and} \quad d(x, y) \leq \lim_{n \to \infty} \left(d(x, u_n) + d(u_n, u_{n+1}) + d(u_{n+1}, u_{n+2}) + d(u_{n+2}, y) \right) = 0.
\]

This is a contradiction. In the second case, we put \(\epsilon = d(x, y)/7\). We can choose \(n_1\) and \(n_2\) such that

\[
d(x, u_{n_1}) + d(u_{n_1}, v_{n_1}) + d(v_{n_1}, y) < \epsilon
\]

\[
d(x, u_{n_2}) + d(u_{n_2}, v_{n_2}) + d(v_{n_2}, y) < \min \{d(x, u_{n_1}), d(x, v_{n_1}), d(u_{n_1}, y), d(u_{n_2}, y)\}.
\]

We note that \(x, u_{n_1}, v_{n_1}, y\) are all different. So by Lemma 2.1, we have

\[
d(x, y) < 7\epsilon = d(x, y),
\]

which implies a contradiction. We have shown (D1). Therefore \(\rho\) is a metric on \(X\). Let \(x \in X\) and \(\{x_\alpha\}_{\alpha \in D}\) be a net in \(X\). Since \(\rho \leq d\), \(\lim_\alpha d(x, x_\alpha) = 0\) implies \(\lim_\alpha \rho(x, x_\alpha) = 0\). Let us prove the converse implication. We assume \(\lim_\alpha \rho(x, x_\alpha) = 0\). Arguing by contradiction, we assume \(\epsilon := \lim_\alpha d(x, x_\alpha)/11 > 0\). Then by (1) at least one of the following holds:

- There exist \(u_{1\beta_1}, u_{2\beta_2}, u_{2\beta_3}, u_{3\beta_3} \in X\) such that \(x, u_{1\beta_1}, x_{1\beta_1} \) are all different for any \(j\);

\[
d(x, u_{1\beta_1}) + d(u_{1\beta_1}, x_{1\beta_1}) < \epsilon,
\]

\[
d(x, u_{2\beta_2}) + d(u_{2\beta_2}, x_{2\beta_2}) < \min \{\rho(x, u_{1\beta_1}), \rho(x, x_{1\beta_1})\},
\]

\[
d(x, u_{3\beta_3}) + d(u_{3\beta_3}, x_{3\beta_3}) < \min \{\rho(x, u_{2\beta_2}), \rho(x, x_{2\beta_2})\} \quad \text{and}
\]

\[
d(x, x_{3\beta_3}) > 10\epsilon \quad \text{for} \quad j = 1, 2, 3.
\]

- There exist \(u_{1\beta_1}, v_{1\beta_1}, u_{2\beta_2}, v_{2\beta_2}, u_{2\beta_3} \in X\) such that \(x, u_{1\beta_1}, v_{1\beta_1}, x_{1\beta_1} \) are all different for any \(j\);

\[
d(x, u_{1\beta_1}) + d(u_{1\beta_1}, v_{1\beta_1}) + d(v_{1\beta_1}, x_{1\beta_1}) < \epsilon,
\]

\[
d(x, u_{2\beta_2}) + d(u_{2\beta_2}, v_{2\beta_2}) + d(v_{2\beta_2}, x_{2\beta_2}) < \min \{\rho(x, u_{1\beta_1}), \rho(x, v_{1\beta_1}), \rho(x, x_{1\beta_1})\} \quad \text{and}
\]

\[
d(x, x_{3\beta_3}) > 10\epsilon \quad \text{for} \quad j = 1, 2.
\]

In the first case, we have

\[
\max \{\rho(x, u_{j+1}), \rho(x, x_{j+1})\} < \min \{\rho(x, u_{j}), \rho(x, x_{j})\}
\]

for \(j = 1, 2\), which implies that \(x, u_{j}, x_{j} \) are all different. We have

\[
d(x_{1\beta_1}, x_{2\beta_2}) \leq d(x_{1\beta_1}, u_{1\beta_1}) + d(u_{1\beta_1}, x) + d(x, u_{2\beta_2}) + d(u_{2\beta_2}, x_{2\beta_2}) < 4\epsilon,
\]

\[
d(x_{2\beta_2}, x_{3\beta_3}) \leq d(x_{2\beta_2}, u_{2\beta_2}) + d(u_{2\beta_2}, x) + d(x, u_{3\beta_3}) + d(u_{3\beta_3}, x_{3\beta_3}) < 4\epsilon \quad \text{and}
\]

\[
d(x, x_{1\beta_1}) \leq d(x, u_{1\beta_1}) + d(u_{1\beta_1}, x_{1\beta_1}) + d(x_{1\beta_1}, x_{2\beta_2}) + d(x_{2\beta_2}, x_{3\beta_3}) + d(x_{3\beta_3}, x_{1\beta_1}) < 10\epsilon.
\]
This is a contradiction. In the second case, we have
\[
\max \{ \rho(x, u\beta), \rho(x, v\beta), \rho(x, x\beta) \} < \min \{ \rho(x, u\beta_1), \rho(x, v\beta_1), \rho(x, x\beta_1) \},
\]
which implies that \(x, u\beta, v\beta, x\beta \) \((j = 1, 2)\) are all different. So by Lemma 2.1, we have
\[
d(x, x\beta_1) < 7 \varepsilon < 10 \varepsilon.
\]
This is a contradiction. Therefore \(\lim_{\alpha} d(x, x_\alpha) = 0 \).

3 Topology

In the section, we discuss the representation of the compatible topology.

Lemma 3.1. Let \((X, d)\) be a 3-generalized metric space. Define subsets \(A\) and \(B\) of \(X\) as follows: \(x \in A\) iff there exists a sequence \(\{x_n\}\) in \(X \setminus \{x\}\) converging to \(x\). \(x \in B\) iff there exists a sequence \(\{x_n\}\) in \(A \setminus \{x\}\) converging to \(x\).

Then
\[
d(u_1, u_n) \leq \sum_{j=1}^{n-1} d(u_j, u_{j+1}) \tag{2}
\]
for \(u_1, u_2, \ldots, u_n \in X\) with \(\{u_1, u_2, \ldots, u_n\} \cap B \neq \emptyset\).

Proof. Let \(\rho\) be as in Theorem 2.2. In the case where \(n = 2\), the conclusion obviously holds. So we assume \(n \geq 3\). We will prove (2) in the following cases:

(i) \(n = 3\) and \(u_2 \in B\)
(ii) \(n = 3\) and either \(u_1 \in B\) or \(u_3 \in B\)
(iii) either \(u_1 \in B\) or \(u_n \in B\)
(iv) \(u_\kappa \in B\) for some \(\kappa\) with \(2 \leq \kappa \leq n - 1\)

Fix \(\varepsilon > 0\). We first consider the first case. In the case where either \(u_1 = u_2, u_2 = u_3\) or \(u_3 = u_1\) holds, (2) is obvious. So we assume that \(u_1, u_2, u_3\) are all different. Since \(u_2 \in B\), there exist \(v_1, w_1, v_2, w_2 \in X\) such that \(u_2 \neq v_1 \neq w_1, u_2 \neq v_2 \neq w_2\),

\[
2d(u_2, v_1) < \min \{ \varepsilon, \rho(u_1, u_2), \rho(u_2, u_3) \},
\]
\[
2d(v_1, w_1) < \rho(u_2, v_1) < \varepsilon,
\]
\[
4d(u_2, v_2) < \rho(u_2, v_1) < \varepsilon \quad \text{and}
\]
\[
2d(v_2, w_2) < \rho(u_2, v_2) < \varepsilon.
\]

Then we have
\[
2\rho(u_2, v_1) < \min \{ \varepsilon, \rho(u_1, u_2), \rho(u_2, u_3) \},
\]
\[
2\rho(v_1, w_1) < \rho(u_2, v_1),
\]
\[
4\rho(u_2, v_2) < \rho(u_2, v_1) \quad \text{and}
\]
\[
2\rho(v_2, w_2) < \rho(u_2, v_2).
\]

Hence by (D3), we obtain that \(u_1, u_2, u_3, v_1, w_1, v_2, w_2\) are all different. We have
\[
d(w_1, w_2) \leq d(w_1, v_1) + d(v_1, u_2) + d(u_2, v_2) + d(v_2, w_2) < 4 \varepsilon,
\]
\[
d(u_1, w_2) \leq d(u_1, u_2) + d(u_2, v_1) + d(v_1, w_1) + d(w_1, w_2) < d(u_1, u_2) + 6 \varepsilon \quad \text{and}
\]
\[
d(u_1, u_3) \leq d(u_1, u_2) + d(u_2, v_2) + d(v_2, u_2) + d(u_2, u_3) \leq d(u_1, u_2) + d(u_2, u_3) + 8 \varepsilon.
\]
Since $\epsilon > 0$ is arbitrary, we obtain (2). We next consider the second case. Without loss of generality, we may assume $u_1 \in B$. In the case where either $u_1 = u_2$, $u_2 = u_3$ or $u_3 = u_1$ holds, (2) is obvious. So we assume that u_1, u_2, u_3 are all different. Since $u_1 \in B$, as in the first case, there exist $v_3, w_3, v_4, w_4 \in X$ such that

$$d(u_1, v_3) < \epsilon, \quad d(v_3, w_3) < \epsilon, \quad d(u_1, v_4) < \epsilon, \quad d(v_4, w_4) < \epsilon$$

and $u_1, u_2, u_3, v_3, w_3, v_4, w_4$ are all different. We have

$$d(w_3, w_4) \leq d(w_3, v_3) + d(v_3, u_1) + d(u_1, v_4) + d(v_4, w_4) < 4\epsilon,$$

$$d(w_4, u_3) \leq d(w_4, u_3) + d(u_4, v_1) + d(u_1, u_2) + d(u_2, u_3) < d(u_1, u_2) + d(u_2, u_3) + 2\epsilon,$$

$$d(u_1, u_3) \leq d(u_1, u_3) + d(v_3, w_3) + d(w_3, w_4) + d(w_4, u_3) \leq d(u_1, u_2) + d(u_2, u_3) + 8\epsilon.$$

Since $\epsilon > 0$ is arbitrary, we obtain (2). In the third case, without loss of generality, we may assume $u_1 \in B$. Considering the second case, we have

$$d(u_1, u_n) \leq d(u_1, u_{n-1}) + d(u_{n-1}, u_n)$$

$$\leq d(u_1, u_{n-2}) + d(u_{n-2}, u_{n-1}) + d(u_{n-1}, u_n)$$

$$\leq d(u_1, u_{n-3}) + d(u_{n-3}, u_{n-2}) + d(u_{n-2}, u_{n-1}) + d(u_{n-1}, u_n)$$

$$\vdots$$

$$\leq \sum_{j=1}^{n-1} d(u_j, u_{j+1}).$$

In the fourth case, considering the first and third cases, we have

$$d(u_1, u_n) \leq d(u_1, u_{\kappa}) + d(u_{\kappa}, u_n)$$

$$\leq \sum_{j=1}^{\kappa-1} d(u_j, u_{j+1}) + \sum_{j=\kappa}^{n-1} d(u_j, u_{j+1}).$$

We complete the proof. \[\square\]

Theorem 3.2. Let (X, d) be a 3-generalized metric space. Let A and B be as in Lemma 3.1. Define $\delta_x > 0$ by

$$\delta_x = \begin{cases} \inf \{d(x, y) : y \in X \setminus \{x\}\} & \text{if } x \in X \setminus A \\ \inf \{d(x, y) : y \in A \setminus \{x\}\} & \text{if } x \in A \setminus B \\ \infty & \text{if } x \in B \end{cases}$$

for $x \in X$. Define a subset N_x of X by

$$N_x = \{S(x, r) : 0 < r < \delta_x\},$$

where

$$S(x, r) = \{y : d(x, y) < r\}.$$

Then the topology τ induced by a subbase $\cup\{N_x : x \in X\}$ is compatible with d.

Proof. In the case where $x \in X \setminus A$, we note $N_x = \{\{x\}\}$. In the case where $x \in A \setminus B$, we note $S(x, \delta_x) \cap A = \{x\}$. We shall show that the topology τ induced by a subbase $\cup\{N_x : x \in X\}$ is compatible with d. It is obvious that if a net $\{x_\alpha\}_{\alpha \in D}$ converges to x in τ, then $\lim_\alpha d(x, x_\alpha) = 0$ holds. In order to prove the converse implication, we show the following:

- For $y \in X$, $G_y \subseteq N_y$ and $x \in G_y$, there exists $G_x \subseteq N_x$ such that $G_x \subset G_y$.
If \(x = y \), then we put \(G_x = G_y \). So we assume \(x \neq y \). In the case where \(y \in X \setminus A, x = y \) always holds. In the case where \(y \in A \setminus B, x \in X \setminus A \) holds. So, putting \(G_x = \{x\} \), we have \(G_x \subseteq G_y \). In the other case, where \(y \in B \), there exists \(\gamma > 0 \) such that \(G_y = \{y\} \). Let \(s \) be a real number with \(0 < s < \min \{r - d(y, x), \delta_x\} \) and put \(G_x = S(y, s) \). Then we have \(G_x \in N_x \) and \(S(x, s) \subseteq G_y \) by Lemma 3.1. Let us prove the converse implication. We assume \(\lim_{i \to \infty} d(x, y_i) = 0 \) and let \(G \) be an open neighborhood of \(x \) in \(r \). Then there exist \(y_1, \ldots, y_n \in X \) and \(G_i \subseteq N_{y_i} \) such that \(G = \bigcap_{i=1}^n G_i \). For every \(i \), there exists \(\delta_i \) such that \(0 < \delta_i < \delta_x \) and \(S(x, \delta_i) \subseteq G_i \). Let \(\delta = \min \{\delta_i : i = 1, 2, \ldots, n\} \). Then for sufficiently large \(\alpha \in D \), we have

\[
\begin{align*}
x_\alpha \in S(x, \delta) = \bigcap_{i=1}^n S(x, \delta_i) \subseteq \bigcap_{i=1}^n G_i = G.
\end{align*}
\]

Thus, \(\{x_\alpha\} \) converges to \(x \) in \(r \).

\[\square\]

4 Example

In this section, we give an example of \(v \)-generalized metric space for \(v \geq 4 \), which does not have a compatible symmetric topology.

Lemma 4.1. Let \(X \) be a set. Let \(a \in X \) and let \(B \) and \(C \) be two nonempty subsets of \(X \) with

\[
X = \{a\} \cup B \cup C.
\]

\(a \notin B \), \(a \notin C \) and \(B \cap C = \emptyset \). Let \(S \) be a mapping from \(C \) into \(B \). Let \(M \) be a positive real number and let \(f \) be a function from \(B \cup C \) into \((0, M] \). Define a function \(d \) from \(X \times X \) into \([0, \infty)\) by

\[
\begin{align*}
d(x, x) &= 0 \\
d(a, x) &= d(x, a) = f(x) \quad \text{if } x \in B \\
d(Sx, x) &= d(x, Sx) = f(x) \quad \text{if } x \in C \\
d(x, y) &= M \quad \text{otherwise}.
\end{align*}
\]

Then \((X, d) \) is a \(v \)-generalized metric space for \(v \geq 4 \).

Proof. (N1) and (N2) are obvious. Let us prove (N3). Let \(x, u_1, \ldots, u_v, y \in X \) be all different. We will show

\[
t = d(x, u_1) + d(u_1, u_2) + \cdots + d(u_{v-1}, u_v) + d(u_v, y) \geq M.
\]

Arguing by contradiction, we assume \(t < M \). For example, we consider the case where \(v = 4 \) and \(x \in C \). Then we have \(u_1 = Sx \in B \). If \(u_2 \in C \), then we have \(Su_2 = u_1 \) and hence \(u_3 = Su_2 = u_1 \), which implies a contradiction. So \(u_2 = a \) holds. Then \(u_3 \in B, u_4 \in C \) and \(Su_4 = u_3 \). Hence \(y = u_3 \) holds, which implies a contradiction. We can similarly prove \(t \geq M \) in the other cases, where \(v \geq 5 \) or \(x \notin C \). Therefore \(d(x, y) \leq M \leq t \). Thus (N3) holds.

\[\square\]

Example 4.2. Let

\[
X = \{(0, 0)\} \cup ((0, 2) \times [0, 2])
\]

Define a function \(d \) from \(X \times X \) into \([0, \infty)\) by

\[
\begin{align*}
d(x, x) &= 0 \\
d((0, 0), (s, 0)) &= d((s, 0), (0, 0)) = s \quad \text{if } s \in (0, 2) \\
d((s, 0), (s, t)) &= d((s, t), (s, 0)) = t \quad \text{if } s, t \in (0, 2) \\
d(x, y) &= 6 \quad \text{otherwise}.
\end{align*}
\]

Then the following hold:
(i) (X, d) is not a v-generalized metric space for $v = 1, 2, 3$.
(ii) (X, d) is a v-generalized metric space for $v \geq 4$.
(iii) X does not have a topology which is compatible with d.

Proof. Since
\[
d((1, 1), (1, 0)) + d((1, 0), (0, 0)) + d((0, 0), (2, 0)) + d((2, 0), (2, 1))
= 1 + 1 + 2 + 1 = 5 < 6 = d((1, 1), (2, 1)),
\]
\[
d((1, 1), (1, 0)) + d((1, 0), (0, 0)) + d((0, 0), (2, 0))
= 1 + 1 + 2 = 4 < 6 = d((1, 1), (2, 0))
\]
and
\[
d((1, 1), (1, 0)) + d((1, 0), (0, 0))
= 1 + 1 = 2 < 6 = d((1, 1), (0, 0)).
\]

(N3) does not hold for $v = 1, 2, 3$. We have shown (i). Put $M = 6, \ a = (0, 0), \ B = (0, 2] \times \{0\}$ and $C = (0, 2] \times (0, 2]$. Define f and S by
\[
f((s, t)) = t \quad \text{if } s, t \in (0, 2]
\]
\[
f((s, 0)) = s \quad \text{if } s \in (0, 2]
\]
\[
S(s, t) = (s, 0) \quad \text{if } s, t \in (0, 2]
\]
By Lemma 4.1, (X, d) is a v-generalized metric space for $v \geq 4$. In order to show (iii), arguing by contradiction, we assume that a compatible symmetric topology exists. Then the following must hold:
- If a net x_n assumes that a compatible symmetric topology exists. Then the following must hold:

- If a net x_n converges to x and for every $\alpha \in D$ a net $x_{n, \alpha}$ converges to x_α, then $\{x_{n, \alpha}\}_{(\alpha, \gamma) \in D \times \prod E_\alpha : \alpha \in D}$ has a subnet converging to x; see page 77 of [7].

We have that $\{(1/\ell, 0)\}_\ell$ converges to $(0, 0)$ and $\{(1/\ell, 1/m)\}_m$ converges to $(1/\ell, 0)$ for every $\ell \in \mathbb{N}$. However, since $d((0, 0), (1/\ell, 1/m)) = 6$ for $(\ell, m) \in \mathbb{N}^2$, a net $\{(1/\ell, 1/\gamma(\ell))\}_{(\ell, \gamma)}$ does not converge to $(0, 0)$. This is a contradiction. Therefore there does not exist a topology which is compatible with d.

Remark.
(i) For $(\alpha, \gamma) \in D \times \prod E_\alpha : \alpha \in D$, $x_{(\alpha, \gamma)} = x_{(\alpha, \gamma(\alpha))}$. For $(\alpha_1, \gamma_1), (\alpha_2, \gamma_2) \in D \times \prod E_\alpha : \alpha \in D$, $(\alpha_1, \gamma_1) \leq (\alpha_2, \gamma_2)$ iff $\alpha_1 \leq \alpha_2$ and $\gamma_1(\alpha) \leq \gamma_2(\alpha)$ for any $\alpha \in D$.
(ii) Indeed, let $\delta_x \in (0, \infty)$ for any $x \in X$ and let τ_1 be the topology induced by a subbase
\[
\{S(x, r) : x \in X, \ 0 < r < \delta_x\}.
\]
Let $s, t \in (0, 1)$ satisfy $0 < 2s < \delta(0, 0)$ and $0 < t < \delta(s, 0)$. Then we have
\[
S((0, 0), 2s) \cap S((s, 0), t) = \left(\left[0, 2s\right] \times \{0\}\right) \cap \left(\{s\} \times [0, t]\right) = \{(s, 0)\}.
\]
Hence $\{(s, 0)\}$ is an open neighborhood of $(s, 0)$. So a sequence $\{(s, 1/n)\}$ does not converge to $(s, 0)$ in τ_1. Since $\lim_n d((s, 0), (s, 1/n)) = 0$, τ_2 is not compatible with d.
(iii) Define a topology τ_2 on X as follows: A subset U of X is open iff for any $x \in U$, there exists $\delta > 0$ such that $S(x, \delta) \subset U$; see Section 5. Then a typical basic open set containing $(0, 0)$ has the following form:
\[
\{(0, 0)\} \cup \bigcup_{0 < s < 6} \{s\} \times [0, t_s),
\]
where $0 < \varepsilon \leq 2$ and $0 < t_s \leq 2$ for any s. This shows that $(0, 0)$ is not a point of first countability. Also, $(0, 0)$ belongs to the closure of $A := \left(\left[0, 2\right] \times \{0, 2\}\right)$, however $d(x, A) = 6 > 0$ holds.
5 Symmetric space and semimetric spaces

In this section, we mention symmetric spaces and semimetric spaces. See Section 9 in [3]. We give some concepts and theorems.

– Let X be a set. Then a function d from $X \times X$ into $[0, \infty)$ is called symmetric if the following holds:
 (i) $d(x, y) = 0$ implies $x = y$.
 (ii) $d(x, y) = d(y, x)$.
– Let X be a topological space. Then X is called symmetrizable if there exists a symmetric d on X and satisfying the following: A subset $U \subset X$ is open iff for any $x \in U$, there exists $\delta > 0$ such that $S(x, \delta) \subset U$.
– Let X be a topological space. Then X is called semimetrizable if there exists a symmetric d on X such that for each $x \in X$, $\{S(x, r) : r > 0\}$ forms a neighborhood base at x.
– Let X be a topological space. Then the following are equivalent:
 – X is semimetrizable.
 – X is symmetrizable and first countable.
– Let X be a topological space and let d be a symmetric d on X. Then the following are equivalent:
 – X is semimetrizable.
 – For any $x \in X$ and $A \subset X$, $d(x, A) := \inf\{d(x, y) : y \in A\} = 0$ iff x belongs to the closure of A.

Remark.
(i) ν-generalized metric spaces (X, d) are symmetrizable, d is a symmetric on X.
(ii) Let (X, d) be a ν-generalized metric space. Then X has a topology which is compatible with d in the sense of Definition 1.3 iff X is semimetrizable.

Finally, the referee raises the following question.

Problem 5.1. Let (X, d) be a ν-generalized metric space. Assume that X has a topology which is compatible with d in the sense of Definition 1.3. Then, is X metrizable?

Conflict of interests
The authors declare that there is no conflict of interests regarding the publication of this article.

Acknowledgement: This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under grant No. (35–130–35–HiCi). The authors, therefore, acknowledge technical and financial support of KAU. The first author is supported in part by JSPS KAKENHI Grant Number 25400141 from Japan Society for the Promotion of Science.

The authors are very grateful to the referee for information on symmetric spaces and semimetric spaces. Also, the referee gives Remark (iii) in Section 4 and raises an open question in Section 5.

References