Weak amenability for the second dual of Banach modules

1 Introduction

The concept of amenability for Banach algebras was introduced by B. E. Johnson in [14]. He showed that the group algebra $L^1(G)$ is amenable if and only if G as a group is amenable. Subsequently, various generalizations of this notion have been studied by a number of authors (for instance, see [2, 6, 11, 19]). In other words, all authors investigated and obtained some results related to amenability of Banach algebras while many Banach algebras can be considered as a Banach module over another Banach algebras. Amini [1] used this fact and developed the concept of module amenability for a Banach algebra A to the case that there is an extra A-module structure on A. He showed that for an inverse semigroup S with the set of idempotents E, $l^1(S)$ is $l^1(E)$-module amenable if and only if S is amenable.

There are many examples of Banach modules which do not have any natural algebra structure. In [7], Ebrahimi Bagha and Amini introduced the notion of Δ-amenability for Banach modules and proved that Δ-amenable Banach modules possess module virtual (approximate) diagonals in an appropriate sense. They also defined the notion of weak Δ-amenability for Banach modules.

In this paper we modify the notion of weak Δ-amenability for a Banach module E and find some results about weak Δ-amenability. Indeed, for a Banach algebra A and a Banach A-module E, we obtain some sufficient conditions to be weakly Δ-amenable of E. We also show (in some results) under certain conditions, the weak Δ''-amenability of E'', the second dual space of E, implies the weak Δ-amenability of E. These results can be regarded as the generalizations of the fact that, for a Banach algebra A, weak amenability of A'' implies weak amenability of A under any of the following conditions:

- every derivation $D : A \rightarrow A'$ satisfies $D''(A'') \subseteq \text{WAP}(A)$ [8];
- A is a left ideal in A'' [12];

Fatemeh Anousheh: Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran, E-mail: f.anousheh@gmail.com
Davood Ebrahimi Bagha: Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran, E-mail: e_bagha@yahoo.com
*Corresponding Author: Abasalt Bodaghi: Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran, E-mail: abasalt.bodaghi@gmail.com
2 Preliminaries

Let A be a Banach algebra and E be a Banach A-bimodule. Let also \Box and \Diamond be the first and second Arens products of A'', respectively. It is well-known that A'' equipped with both Arens products is a Banach algebra (for more details, see [5]). The dual space E' of E is also a Banach A-module by the following module actions:

\[
(a' \cdot x', x) = (x', a \cdot x), \quad (x' \cdot a, x) = (x', a \cdot x), \quad (a \in A, \ x \in E, \ x' \in E').
\]

We put $E'' = (E')'$, and we regard E as a subspace of E'' in the standard fashion. We denote the canonical images of x and E in E'' by x and E, respectively.

One should remember that E'' is an (A'', \Box)-bimodule. Indeed, let $a'' \in A''$ and $e'' \in E''$. By Goldstine's theorem there are nets (a_α) in A and (e_β) in E such that $a'' = \lim_\alpha a_\alpha$ and $e'' = \lim_\beta e_\beta$. Then

\[
e'' \cdot a'' = \lim_\alpha w^* - \lim_\beta e_\alpha a_\alpha \quad \text{and} \quad a'' \cdot e'' = w^* - \lim_\alpha \lim_\beta a_\alpha e_\beta.
\]

Also for any $e'' \in E''$ the map $a'' \mapsto a'' \cdot e''$ from A'' into E'' is w^*-continuous and for any $a'' \in A''$ the map $e'' \mapsto e'' \cdot a''$ from E'' into E'' is w^*-continuous.

Let A be a Banach algebra, E be a Banach A-bimodule and $\Delta : E \to A$ be a bounded Banach A-bimodule homomorphism, that is, a bounded linear map such that for any $a \in A, x \in E$,

\[
\Delta(a \cdot x) = a \cdot \Delta(x) \quad \text{and} \quad \Delta(x \cdot a) = \Delta(x) \cdot a.
\]

It is routine to check that $\Delta'' : E'' \to A''$, the second adjoint of Δ, is a bounded A''-bimodule homomorphism.

Recall that for a Banach algebra A and a Banach A-bimodule X, a derivation $D : A \to X$ is a linear map such that $D(ab) = D(a) \cdot b + a \cdot D(b)$ for all $a, b \in A$. Also, the derivation D is said to be inner if there exists $x \in X$ such that $D(a) = a \cdot x - x \cdot a$ for every $a \in A$. The Banach algebra A is called amenable if every continuous derivation $D : A \to X'$ is inner for every Banach A-bimodule X and A is called weakly amenable if every continuous derivation $D : A \to A'$ is inner.

Throughout this paper, A is a Banach algebra, E is a Banach A-bimodule and $\Delta : E \to A$ is a bounded Banach A-bimodule homomorphism unless otherwise stated explicitly.

Let X be a Banach A-bimodule. A bounded linear map $D : A \to X$ is called a Δ-derivation if

\[
D(\Delta(a \cdot x)) = a \cdot D(\Delta(x)) + D(a) \cdot \Delta(x)
\]

and

\[
D(\Delta(x \cdot a)) = D(\Delta(x)) \cdot a + \Delta(x) \cdot D(a)
\]

for any $a \in A$ and $x \in E$. Also D is called Δ-inner if there is $f \in X$, such that $D(\Delta(x)) = \Delta(x) \cdot f - f \cdot \Delta(x)$, for any $x \in E$. A Banach A-bimodule E is called Δ-amenable if for every Δ-derivation $D : A \to X^*$ is Δ-inner [7].

Definition 2.1. A Banach A-bimodule E is called weakly Δ-amenable (as an A-bimodule) if each Δ-derivation from A to $(\Delta(E))'$ is Δ-inner.

Remark 2.2. Note that the definition of weak Δ-amenability in [7] is an alternative definition from our definition ($(\Delta(E))'$ instead of $(\Delta(E))'$). Since $\Delta(E)$ is not necessarily a closed subspace of A, it may not be a Banach space, so we modified it. However, it seems that we are able to validate the results of [7] by applying this new definition.
3 Weak amenability of Banach modules

We start this section with a definition which is analogous to [13, Definition 1.1] for ker Δ.

Definition 3.1. Let A be a Banach algebra, E be a Banach A-bimodule and Δ : E → A be a bounded A-bimodule homomorphism. Then ker Δ has Δ-trace extension property if for every λ ∈ (ker Δ)' with λ · Δ(x) = Δ(x) · λ for every x ∈ E, there exists μ ∈ E' such that μ · Δ(x) = Δ(x) · μ for every x ∈ E and μ|ker Δ = λ.

Theorem 3.2. Suppose that every Δ-derivation D : A → E' is Δ-inner and ker Δ has Δ-trace extension property. Then E is weakly Δ-amenable.

Proof. Let D : A → \(\overline{\Delta(E)} \) be a Δ-derivation. Obviously, Δ' ◦ D : A → E' is a Δ-derivation. By assumption Δ' ◦ D is Δ-inner. So, there exists \(e' \in E' \) such that for every \(x \in E \), \(\Delta'(\Delta(x)) = \Delta(x) \cdot e' - e' \cdot \Delta(x) \). Thus for each \(x, y \in E \), we get

\[
\langle D(\Delta(x)), \Delta(y) \rangle = \langle \Delta' \circ D(\Delta(x)), y \rangle \\
= \langle \Delta(x) \cdot e' - e' \cdot \Delta(x), y \rangle \\
= \langle e', y \cdot \Delta(x) - \Delta(x) \cdot y \rangle.
\]

Thus, \(\langle \Delta(x) \cdot e' - e' \cdot \Delta(x), y \rangle = 0 \), for all \(y \in \ker \Delta \) and \(x \in E \). In other words, \(\langle \Delta(x) \cdot e' - e' \cdot \Delta(x) \rangle |_{\ker \Delta} = 0 \). Hence, \((\Delta(x) \cdot e') |_{\ker \Delta} = (e' \cdot \Delta(x)) |_{\ker \Delta} \). Since ker Δ has Δ-trace extension property, there exists \(\lambda \in E' \) such that \(\lambda \cdot \Delta(x) = \Delta(x) \cdot \lambda \) for every \(x \in E \) and \(\lambda |_{\ker \Delta} = e' |_{\ker \Delta} \), and so \((e' - \lambda) |_{\ker \Delta} = 0 \). Also

\[
\Delta'(\Delta(x)) = \Delta(x) \cdot (e' - \lambda) - (e' - \lambda) \cdot \Delta(x).
\]

Define \(\mu \in \overline{\Delta(E)} \) by \(\mu(\Delta(x)) = (e' - \lambda)(x) \), for every \(x \in E \). We have \((e' - \lambda) |_{\ker \Delta} = 0 \). This shows that \(\mu \) is well-defined. Now, for each \(x, y \in E \), we have

\[
\langle D(\Delta(x)), \Delta(y) \rangle = \langle e', y \cdot \Delta(x) - \Delta(x) \cdot y \rangle = \langle e' - \lambda, y \cdot \Delta(x) - \Delta(x) \cdot y \rangle \\
= \langle \mu, \Delta(y) \cdot \Delta(x) - \Delta(x) \cdot y \rangle = \langle \mu, \Delta(y) \cdot \Delta(x) - \Delta(x) \cdot \Delta(y) \rangle \\
= \langle \Delta(x) \cdot \mu - \mu \cdot \Delta(x), y \rangle.
\]

Thus, \(\langle D(\Delta(x)), a \rangle = \langle \Delta(x) \cdot \mu - \mu \cdot \Delta(x), a \rangle \), for all \(a \in \overline{\Delta(E)} \) and \(x \in E \). Therefore \(D \) is Δ-inner. \(\square \)

Definition 3.3. Let A be a Banach algebra, E be a Banach A-bimodule and Δ : E → A be a bounded A-bimodule homomorphism. Then ker Δ has weak Δ-trace extension property if for every λ ∈ (ker Δ)' with λ · a = a · λ for every \(a \in A \), there exists \(\mu \in E' \) such that \(\mu \cdot \Delta(x) = \Delta(x) \cdot \mu \) for every \(x \in E \), and \(\mu |_{\ker \Delta} = \lambda \).

Proposition 3.4. If E is weakly Δ-amenable and \(\Delta(E) \) is norm closed in A, then ker Δ has weak Δ-trace extension property.

Proof. Suppose that \(\lambda \in (\ker \Delta)' \) such that \(a \cdot \lambda = \lambda \cdot a \), for all \(a \in A \). By the Hahn-Banach theorem, there exists \(\Lambda \in E' \) such that \(\Lambda |_{\ker \Delta} = \lambda \). Define \(D : A \to E' \) by \(D(a) = a \cdot \Lambda - \Lambda \cdot a \) for all \(a \in A \). So, \(D(a) |_{\ker \Delta} = 0 \), for every \(a \in A \). Therefore, \(D : A \to (\ker \Delta)^{\perp} \) is a derivation. We know that there is an isometric isomorphism between \((\ker \Delta)^{\perp} \) and \(\overline{\Delta(E)} \) and there is a homeomorphism between \(\overline{\Delta(E)} \) and \(\Delta(E) \) which is also an A-bimodule isomorphism. By weak Δ-amenability of E, there exists \(\mu \in (\ker \Delta)^{\perp} \) such that

\[
D(\Delta(x)) = \Delta(x) \cdot \mu - \mu \cdot \Delta(x) = \Delta(x) \cdot \Lambda - \Lambda \cdot \Delta(x).
\]

Putting \(T = \Lambda - \mu \), we have \(T |_{\ker \Delta} = \lambda \) and \(T \cdot \Delta(x) = \Delta(x) \cdot T \) for any \(x \in E \). \(\square \)

In analogy with Proposition 3.4, we have the following result. The proof is similar, but we include it.

Proposition 3.5. If E is weakly Δ-amenable and \(\Delta(E) \) is norm closed in A and has a bounded approximate identity, then ker Δ has Δ-trace extension property.
Proof. Assume that \(\lambda \in (\ker \Delta)' \) such that \(\Delta(x) \cdot \lambda = \lambda \cdot \Delta(x) \), for all \(x \in E \). By the Hahn-Banach theorem, there is \(\Lambda \in E' \) such that \(\Lambda|_{\ker \Delta} = \lambda \). Define \(D : \Delta(E) \rightarrow E' \) by \(D(\Delta(x)) = \Delta(x) \cdot \Lambda - \Lambda \cdot \Delta(x) \), for all \(x \in E \).

So for any \(x \in E \), \(D(\Delta(x))|_{\ker \Delta} = 0 \). Hence, \(D : \Delta(E) \rightarrow (\ker \Delta)^\perp \) is a derivation. Since \(\Delta(E) \) has a bounded approximate identity, by [18, Proposition 2.1.6], we can extend \(D \) to a derivation \(\tilde{D} : A \rightarrow (\ker \Delta)^\perp \). Similar to the proof of Proposition 3.4, there exists \(\mu \in (\ker \Delta)^\perp \), such that

\[
D(\Delta(x)) = \tilde{D}(\Delta(x)) = \Delta(x) \cdot \mu - \mu \cdot \Delta(x) = \Delta(x) \cdot \Lambda - \Lambda \cdot \Delta(x).
\]

Take \(T = \Lambda - \mu \). So, \(T|_{\ker \Delta} = \lambda \) and \(T \cdot \Delta(x) = \Delta(x) \cdot T \) for all \(x \in E \).

\[
\square
\]

4 Weak amenability for second dual

In this section, for a Banach module \(E \), we prove under what conditions the weak \(\Delta'' \)-amenability of \(E'' \) implies the weak \(\Delta \)-amenability of \(E \). From now on, we consider \(A' \) with the first Arens product as a Banach algebra.

A functional \(a' \in A' \) is said to be WAP (weakly almost periodic) on \(A \) if the mapping \(a \mapsto a'a \) from \(A \) into \(A' \) is weakly compact. In [17], Pym showed that this definition is equivalent to the following condition: For any two nets \((a_j) \) and \((b_k) \) in \(\{a \in A : \parallel a \parallel \leq 1\} \) we have \(\lim_j \lim_k (a_j'a_jb_k) = \lim_k \lim_j (a'_jb'_a) \), whenever both iterated limits exist. The collection of all WAP functionals on \(A \) is denoted by WAP(A). Also we have \(a' \in \text{WAP}(A) \) if and only if \((a'' \boxtimes b'', a') = (a'' \circ b'', a') \) is \(w^* \)-continuous on \(A'' \) for every \(b'' \in A'' \).

Following the above, for a Banach \(A \)-bimodule \(X \), we consider the set \(\text{WAP}_r(X) = \{x' \in X' : a'' \mapsto \langle x'', a'' \rangle \} \) is \(w^* \)-continuous on \(A'' \) for every \(x'' \in X'' \).

The idea of the following theorem is taken from [8, Theorem 2.1].

Theorem 4.1. Suppose that \(E'' \) is weakly \(\Delta'' \)-amenable and \(\Delta(E) \) is norm closed in \(A \). If every \(\Delta \)-derivation \(D : A \rightarrow (\Delta(E))' \) satisfies \(D''(A'') \subseteq \text{WAP}_r(\Delta(E)) \), then \(E \) is weakly \(\Delta \)-amenable.

Proof. By hypothesis, \(\Delta''(E'') \) is norm and thus \(w^* \)-closed in \(A'' \). So

\[
\Delta''(E'') = \Delta''(E'')|_{\ker \Delta'} = (\ker \Delta')^\perp = (\text{Im} \Delta)^{1\perp} \cong (A(E))''.
\]

Assume that \(D : A \rightarrow (\Delta(E))' \) is a \(\Delta \)-derivation. We show that \(D'' : A'' \rightarrow (\Delta(E))'' = (\Delta''(E''))' \) is a \(\Delta'' \)-derivation. Take the nets \(\{a_{\alpha}\} \subseteq A \) and \(\{x_{\beta}\} \subseteq E \) so that converge to \(a'' \) and \(x'' \) in the \(w^* \)-topology of \(A'' \) and \(E'' \), respectively. Using the \(w^* \)-\(w^* \)-continuity of \(D'' \) and \(\Delta'' \), we obtain

\[
D''(a''(\Delta''(x''))) = w^* - \lim_{\alpha} w^* - \lim_{\beta} (D(a_{\alpha}) \Delta(x_{\beta}))
= w^* - \lim_{\alpha} w^* - \lim_{\beta} (D(a_{\alpha}) \cdot \Delta(x_{\beta}) + a_{\alpha} \cdot D(\Delta(x_{\beta})))
\]

For every \(c'' \in (\Delta(E))'' \), we get

\[
\lim_{\alpha} \lim_{\beta} (D(a_{\alpha}) \cdot \Delta(x_{\beta}), c'') \lim_{\alpha} (D(c''(a_{\alpha}), a_{\alpha} \cdot \Delta(x_{\beta})) \lim_{\alpha} (D(a_{\alpha}) \cdot \Delta(x_{\beta}), c'') = \lim_{\alpha} (\Delta''(a'') \cdot \Delta''(x'')) = \langle D''(a''), \Delta''(x'') \rangle.
\]

Now, for each \(c'' \in (\Delta(E))'' \), we have

\[
\lim_{\alpha} \lim_{\beta} (D(a_{\alpha}), c'') = \lim_{\alpha} (c''(a_{\alpha}), a_{\alpha} \cdot \Delta(x_{\beta})) = \lim_{\alpha} (c'' a_{\alpha}, D(\Delta(x_{\beta})))
= \lim_{\alpha} \lim_{\beta} (D(\Delta(x_{\beta})), c'' a_{\alpha}) \lim_{\alpha} (D''(\Delta''(x''))). \]

\[
\square
\]
Since $D''(\Delta''(x'')) \in \text{WAP}_r(\Delta(E))$, there exists $y' \in \text{WAP}_r(\Delta(E))$ such that $D''(\Delta''(x'')) = \tilde{y}'$. Hence,
\[
\lim_{\alpha}(D''(\Delta''(x'')), c''(a_{\alpha})) = \lim_{\alpha}(\tilde{y}', c''(a_{\alpha})) = \lim_{\alpha}(c''(\tilde{a}_{\alpha}), y') = \langle c''\tilde{a}', y' \rangle
\]
\[
= \langle \tilde{y}', c''\tilde{a}' \rangle = \langle D''(\Delta''(x'')), c''\tilde{a}' \rangle = \langle a'' \cdot D''(\Delta''(x'')), c'' \rangle. \tag{4}
\]
It follows from (1), (2) and (4) that
\[
D''(a''(\Delta''(x''))) = D''(a''(\Delta''(x''))) + a'' \cdot D''(\Delta''(x'')).
\]
Similarly, one can show that
\[
D''(\Delta''(x''))a'' = D''(\Delta''(x''))a'' + \Delta''(x'') \cdot D''(a'').
\]
Therefore D'' is a Δ''-derivation. Since E'' is weakly Δ''-amenable, D'' is Δ''-inner. So there is $a''' \in (\Delta(E))''$ such that $D''(\Delta''(x'')) = \Delta''(x'') \cdot a''' - a'''. \Delta''(x'')$, for all $x'' \in E''$. Now for any $x \in E$,
\[
D(\Delta(\bar{x})) = D''(\Delta(\bar{x})) = \Delta(\bar{x}) \cdot a''' - a'''. \Delta(\bar{x})
\]
and we obtain $D(\Delta(x)) = \Delta(x) \cdot a' - a' \cdot \Delta(x)$ where $a' = a'''|_{\Delta(E)}$. \hfill \square

Remark 4.2. Let A be a Banach algebra and E be a Banach A-bimodule and $\Lambda : E \to A$ be a bounded A-bimodule homomorphism with norm closed range. Suppose that $R : \Delta(E)'' \to \Delta(E)'$ is the restriction map. Also assume that $\Lambda : (\Delta(E))'' \to \Delta(E)''$ is defined by $\Lambda(\psi) = \overline{R(\psi)}$ for every $\psi \in (\Delta(E))''$. So, for any $x \in \Delta(E)$, we have
\[
\langle \Lambda(\psi), \bar{x} \rangle = \langle \overline{R(\psi)}, \bar{x} \rangle = \langle \bar{x}, R(\psi) \rangle = \langle R(\psi), x \rangle = \langle \psi, \bar{x} \rangle.
\]
If $x'' = w^* - \lim_i \bar{x}_i$ where $x'' \in \Delta(E)'$ and $x_i \in \Delta(E)$, then
\[
\langle \Lambda(\psi), x'' \rangle = \langle \overline{R(\psi)}, x'' \rangle = \langle x'', R(\psi) \rangle = \langle w^* - \lim_i \bar{x}_i, R(\psi) \rangle
\]
\[
= \lim_i \langle \bar{x}_i, R(\psi) \rangle = \lim_i \langle R(\psi), x_i \rangle = \lim_i \langle \psi, \bar{x}_i \rangle = \lim_i \langle \Lambda(\psi), \bar{x}_i \rangle.
\]
The proof of the following result is close to the proof of [12, Theorem 2.3], but we indicate its proof for the sake of completeness.

Theorem 4.3. Let A be a Banach algebra, let E be a Banach A-bimodule and $\Delta : E \to A$ be a bounded A-bimodule homomorphism. If $\Delta(E)$ is norm closed in A and $A', \Delta(E) \subseteq \Delta(E)$, then weak Δ''-amenability of E'' (as an A''-bimodule) implies the weak Δ''-amenability of E' (as an A-bimodule).

Proof. Let $D : A \to \Delta(E)'$ be a Δ-derivation and R and Λ be as in Remark 4.2. It suffices to show that $\Lambda \circ D'' : A'' \to \Delta(E)'''$ is a Δ''-derivation. So, by Δ''-weak amenability of E'', there is $F \in \Delta(E)'''$ such that for any $y'' \in (E'')'$, we have
\[
\Lambda \circ D''(\Delta''(y'')) = \Delta''(y'') \cdot F - F \cdot (\Delta''(y'')).
\]
Now, by putting $f = R(F)$, for any $y \in E$, we have $D(\Delta(y)) = \Delta(y) \cdot f - f \cdot \Delta(y)$. It shows that D is a Δ-inner derivation. Let $a'' \in A''$ and $b'' \in E''$. Take the nets $(a_i) \subseteq A$ and $(b_j) \subseteq E$ with $a'' = w^* - \lim_i a_i$ and $b'' = w^* - \lim_j b_j$. We have
\[
D''(a'' \Delta''(b'')) = w^* - \lim_i w^* - \lim_j D''(a_i \Delta(b_j))
\]
\[
= w^* - \lim_i w^* - \lim_j (D(a_i \cdot \Delta(b_j)) + a_i \cdot D(\Delta(b_j)))
\]
\[
= D''(a'') \cdot \Delta''(b'') + w^* - \lim_i a_i \cdot D''(\Delta''(b'')).
\]
So $\Lambda \circ D''(a'' \Delta''(b'')) = \Lambda(D''(a'') \cdot \Delta''(b'')) + \Lambda(w^* - \lim_i a_i \cdot D''(\Delta''(b''))).$ Applying Remark 4.2, we get
\[
\langle \Lambda(D''(a'') \cdot \Delta''(b'')), \bar{x} \rangle = \langle D''(a'') \cdot \Delta''(b''), \bar{x} \rangle = \langle D''(a''), \Delta''(b'') \cdot \bar{x} \rangle \quad (x \in \Delta(E)).
\]
Since \(A'' \Delta(E) \subseteq \Delta(E) \), we have \(\Delta''(b'') \cdot \mathfrak{x} \in \Delta(E) \). Thus

\[
\{ D''(a''), \Delta''(b'') \cdot \mathfrak{x} \} = \{ \Lambda \circ D''(a''), \Delta''(b'') \cdot \mathfrak{x} \} = \{ \Lambda \circ D''(a'') \cdot \Delta''(b''), \mathfrak{x} \}.
\]

For each \(x'' \in \Delta(E)'' \), we deduce that

\[
\{ \Lambda(D''(a'') \cdot \Delta''(b'')), x'' \} = \{ \Lambda \circ D''(a'') \cdot \Delta''(b''), x'' \}.
\]

Hence \(\Lambda(D''(a'') \cdot \Delta''(b'')) = (\Lambda \circ D''(a'')) \cdot \Delta''(b''). \) For each \(x \in \Delta(E) \), we have

\[
\{ \Lambda(w^* - \lim_{\mathcal{I}}(\Delta_i \cdot D''(\Delta''(b'))), \mathfrak{x} \} = \{ (w^* - \lim_{\mathcal{I}}(\Delta_i \cdot D''(\Delta''(b'))), \mathfrak{x} \} = \lim_{\mathcal{I}}(\Delta_i \cdot D''(\Delta''(b')))
\]

Thus

\[
\Lambda(\Delta''(b'')) = (\Lambda \circ D''(a'')) \cdot \Delta''(b'') + \Lambda''(\Delta''(b))).
\]

Similarly we can show that

\[
\Lambda \circ D''(\Delta''(b''))a'' = (\Lambda \circ D''(\Delta''(b'')) \cdot a'' + \Delta''(b'') \cdot (\Lambda \circ D''(a'')).
\]

Therefore \(\Lambda \circ D'' \) is a \(\Delta'' \)-derivation. This completes the proof.

The idea of the following theorem is taken from \[10, Theorem 2.2\]. We bring its proof.

Theorem 4.4. Let \(A \) be a Banach algebra, let \(E \) be a Banach \(A \)-bimodule and \(\Delta : E \to A \) be a bounded \(A \)-bimodule homomorphism with norm closed range. Suppose that \(\Delta(E) \) is a dual Banach algebra. If \(E'' \) is weakly \(\Delta'' \)-amenable (as an \(A'' \)-bimodule) and \(\Delta(E)'' \) has a bounded approximate identity, then \(E \) is weakly \(\Delta \)-amenable (as an \(A \)-bimodule).

Proof. By assumptions, \(\Delta(E) \) is a norm closed ideal of \(A \) and hence \(\Delta(E) \) is a Banach algebra. Assume that \(\Delta(E) = B' \) for a Banach space \(B \) such that \(\tilde{B} \) is a submodule of the dual module \(\Delta(E)' \). Suppose that \(i : B \to B'' = \Delta(E)' \) is the embedding map and \(i' : \Delta(E)'' \to B'' = \Delta(E) \) is the adjoint of \(i \). Let \(D : A \to \Delta(E)' \) be a \(\Delta \)-derivation. Then

\[
\tilde{D} = i''' \circ D \circ i' : \Delta(E)'' \to \Delta(E)'''\]

is a derivation. Since \(\Delta(E)''' = \Delta''(E'') \) is a closed ideal of \(A''' \) and \(\Delta(E)'' \) has a bounded approximate identity, by \[18, Proposition 2.1.6\], we can extend \(\tilde{D} \) to a derivation \(\tilde{D} : A'' \to \Delta(E)'\). It follows from the weak \(\Delta'' \)-amenability of \(E'' \) that there exists \(F \in \Delta(E)''' \) such that

\[
\tilde{D}(a'') = a'' \cdot F - F \cdot a'' \quad (a'' \in \Delta(E)'').
\]

Let \(j : \Delta(E) \to \Delta(E)'' \) be the canonical mapping and let \(f = j'(F) \). Then \(D(a) = a \cdot f - f \cdot a \) for all \(a \in \Delta(E) \).

Let \(A \) be a Banach algebra and \(X \) be a Banach \(A \)-bimodule. Then \(X''' \) can have two \(A'' \)-bimodule structures (see \[9\]). First we regard \(X''' \), as the dual space of \(X'' \). Since \(X \) is an \(A \)-bimodule, \(X'' \) is an \(A'' \)-bimodule, and thus \(X''' = (X'')' \) is also an \(A''' \)-bimodule. In fact, for each \(x'''' \in X''' \), \(a''' \in A''' \), \(x'' \in X'' \),

\[
\langle a''', x'''' \rangle = \langle x''', x'' \cdot a'' \rangle \quad \text{and} \quad \langle x'''' \cdot a''', x'' \rangle = \langle x''''', a'' \cdot x'' \rangle.
\]
Assume that \(x''' = w^* - \lim_k \tilde{x}_k, x'' = w^* - \lim_i \tilde{x}_i, a'' = w^* - \lim_j \tilde{a}_j \) for nets \((x'_k)\) in \(X'\) and \((x_i)\) in \(X\) and \((a_j)\) in \(A\). It is easily verified that
\[
\langle a'' \cdot x''' \cdot x'' \rangle = \lim_k \lim_i \langle x'_k \cdot x_i \cdot a_j \rangle, \quad \langle x'' \cdot a'' \cdot x'' \rangle = \lim_k \lim_i \langle x'_k \cdot a_j \cdot x_i \rangle.
\]

In the second way, since \(X\) is an \(A\)-bimodule, \(X'\) is also an \(A\)-bimodule and hence \(X'' = (X')''\) is an \(A''\)-bimodule.

Considering the above nets, we have
\[
a'' \cdot x''' = w^* - \lim_j w^* - \lim_k a_j \cdot x'_k \quad \text{and} \quad x'' \cdot a'' = w^* - \lim_j w^* - \lim_k x'_k \cdot a_j.
\]
By a routine computation, we get
\[
\langle a'' \cdot x''' \cdot x'' \rangle = \lim_k \lim_i \langle x'_k \cdot x_i \cdot a_j \rangle \quad \text{and} \quad \langle x'' \cdot a'' \cdot x'' \rangle = \lim_k \lim_i \langle x'_k \cdot a_j \cdot x_i \rangle.
\]

Theorem 4.5. Let \(A\) be a Banach algebra, \(E\) be a Banach \(A\)-bimodule and \(\Delta: E \rightarrow A\) be a bounded \(A\)-bimodule homomorphism with norm closed range. If two \(A''\)-bimodule structures on \(X'' = (X')''\) coincide, then weak \(\Delta''\)-amenability of \(E'' = (\Delta(E)''\) implies the weak \(\Delta\)-amenability of \(E\). (as an \(A\)-bimodule).

Proof. Let \(D: A \rightarrow (\Delta(E)')'\) be a \(\Delta\)-derivation. Then by [6, Proposition 1.7] \(D'' : A'' \rightarrow (\Delta(E)'') = (\Delta(E)')''\) is a \(\Delta''\)-derivation. (Here the action of \(A''\) on \(\Delta(E)''\) is \(\bullet\)) By hypothesis,
\[
(\Delta(E)')'' = (\Delta(E)')'' = (\Delta(E)')' = (\Delta''(E)'').
\]
Since \(E''\) is weakly \(\Delta''\)-amenable, \(D''\) is a \(\Delta''\)-inner derivation and hence \(D\) is a \(\Delta\)-inner derivation. \(\square\)

The next definition was introduced by Medghalchi and Yazdanpanah [16].

Definition 4.6. The Banach algebra \(A\) has strongly double limit property (SDLP) if for each bounded net \((a_i)\) in \(A\) and each bounded net \((f_\alpha)\) in \(A'\)
\[
\lim_{\alpha} \lim_i \langle f_\alpha, a_i \rangle = \lim_i \lim_{\alpha} \langle f_\alpha, a_i \rangle.
\]

Some results about (SDLP) can be found in [4].

Proposition 4.7. Let \(A\) be a Banach algebra and \(X\) be a Banach \(A\)-bimodule. If \(A\) has (SDLP), then two \(A''\)-bimodule structures on \(X''\) coincide.

Proof. Let \(x''' \in X'''\) and \(a'' \in A''\). Choose the nets \((x'_k)\) in \(X'\), \((x_i)\) in \(X\) and \((a_j)\) in \(A\) such that \(x''' = w^* - \lim_k \tilde{x}_k, x'' = w^* - \lim_i \tilde{x}_i, a'' = w^* - \lim_j \tilde{a}_j\). Then
\[
\langle a'' \cdot x''' \cdot x'' \rangle = \lim_k \lim_i \langle x'_k \cdot x_i \cdot a_j \rangle = \lim_k \lim_i \langle x'_k \cdot x_i \cdot a_j \rangle = \lim_k \lim_i \langle x'_k \cdot a_j \cdot x_i \rangle = \langle a'' \cdot x''' \cdot x'' \rangle.
\]

Corollary 4.8. Let \(A\) be a Banach algebra, \(E\) be a Banach \(A\)-bimodule and \(\Delta: E \rightarrow A\) be a bounded \(A\)-bimodule homomorphism with norm closed range. If \(A\) has (SDLP), then weak \(\Delta''\)-amenability of \(E''\) as an \(A''\)-bimodule implies the weak \(\Delta\)-amenability of \(E\) as an \(A\)-bimodule.

Proof. If \(A\) has (SDLP), then two \(A''\)-bimodule structures on \(\Delta(E)''\) coincide. Now apply Theorem 4.5. \(\square\)

We close this section by two examples.

Example 4.9. Let \(G\) be a locally compact group. We know that \(L^1(G)\) is a closed ideal in \(M(G)\) and thus \((L^1(G))''\) is a closed ideal in \((M(G))''\). Let \(\Delta: L^1(G) \rightarrow M(G)\) be the inclusion map. We consider \(L^1(G)\) as an \(M(G)\)-module with the convolution module actions, then \(L^1(G)\) is weakly \(\Delta\)-amenable as an \(M(G)\)-module. To see this, if \(D: M(G) \rightarrow (L^1(G))' = (\Delta(L^1(G)))'\) is a \(\Delta\)-derivation, then \(D|_{L^1(G)}: L^1(G) \rightarrow L^1(G)\) is
$L^1(G)'$ is a derivation. Since $L^1(G)$ as a Banach algebra is weakly amenable [15], $D|_{L^1(G)}$ is inner and thus D is Δ-inner. On the other hand, if G is a non-discrete abelian group, then $L^1(G)''$ is not weakly amenable as a Banach algebra. So, we have a non-inner derivation $D_1 : L^1(G)'' \rightarrow L^1(G)'''$ which by [18, Proposition 2.1.6], this derivation can be extended to a derivation $\tilde{D}_1 : M(G)'' \rightarrow L^1(G)'''$. Since D_1 is not inner, \tilde{D}_1 is not Δ''-inner. This shows that $L^1(G)'''$ is not weakly Δ''-amenable as a $M(G)'''$-bimodule.

Example 4.10. Let G be a locally compact group and $1 < p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then $L^p(G)$ is a Banach $L^1(G)$-bimodule. Suppose that $f \in L^q(G)$ and $\Delta_f : L^p(G) \rightarrow L^1(G)$ is defined by $\Delta_f(g) = f \ast g$. Clearly, Δ_f is a bounded Banach $L^1(G)$-bimodule homomorphism. If G is compact and $(L^p(G))''$ is weakly Δ''_f-amenable as an $L^1(G)''$-bimodule, we show that $L^p(G)$ is weakly Δ_f-amenable as an $L^1(G)$-bimodule.

Let $D : L^1(G) \rightarrow \Delta_f(L^p(G))$ be a Δ_f-derivation. It is known that $L^1(G)$ has a bounded approximate identity and $L^1(G)$ is an ideal in $L^1(G)''$ [20]. So by [18, Proposition 2.1.6], we can extend D to a Δ''_f-derivation $\tilde{D} : L^1(G)'' \rightarrow \Delta_f(L^p(G))$. Due to the reflexivity of $L^p(G)$ we have $\text{Im}(\Delta_f) = \text{Im}(\Delta''_f)$. So \tilde{D} can be replaced by $\tilde{D} : L^1(G)'' \rightarrow (\Delta''_f(L^p(G)))'$. Since $L^p(G)''$ is weakly Δ''_f-amenable as an $L^1(G)''$-bimodule, \tilde{D} is a Δ''_f-inner derivation. Consequently, D is a Δ_f-inner derivation.

Acknowledgement: The authors are grateful to the reviewers for pointing out a number of misprints and inaccuracies.

References