On the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics

Abstract: A parametrization of the fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics is given: we describe the gluing of the Brill-Noether loci described by Drézet and Maican, provide a common parameter space for these loci, and show that the Simpson moduli space $M = M_{dm+c}(\mathbb{P}_2)$ is a blow-down of a blow-up of a projective bundle over a smooth moduli space of Kronecker modules. Two different proofs of this statement are given.

Keywords: Simpson moduli spaces, 1-dimensional sheaves, Blow-up, Blow-down, Quotients by non-reductive groups

MSC: 14D20

Introduction

Fix an algebraically closed field, $\text{char} = 0$. Let V be a 3-dimensional vector space over and let $\mathbb{P}_2 = \mathbb{P}V$ be the corresponding projective plane. Let $P(m) = dm + c$ be a linear polynomial in m with integer coefficients, $d > 0$. Let $M = M_{dm+c}(\mathbb{P}_2)$ be the Simpson moduli space (cf. [1]) of semi-stable sheaves on \mathbb{P}_2 with Hilbert polynomial $dm + c$. As shown in [2], M is a projective irreducible locally factorial variety of dimension $d^2 + 1$. In general, moduli space M parameterizes the s-equivalence classes, i.e., there is a bijection between the closed points of M and the s-equivalence classes of semistable sheaves on \mathbb{P}_2 with Hilbert polynomial $dm + c$. This way different isomorphism classes of sheaves could be identified in the moduli space. However, if $\gcd(c, d) = 1$, every semi-stable sheaf is stable, s-equivalence coincides with the notion of isomorphism, and M is a fine moduli space whose closed points are in bijection with the isomorphism classes of stable sheaves on \mathbb{P}_2 with Hilbert polynomial $dm + c$. In this case there is a universal family of stable sheaves parameterized by M such that every family of $(dm + c)$-sheaves is obtained (up to a twist) as a pull-back of this universal family. As demonstrated in [2, Proposition 3.6], M is smooth in this case.

In [3] and [4] it was proved that $M_{dm+c} \cong M_{dm+c'}$ if and only if $d = d'$ and $c = \pm c'$ mod d. Therefore, in order to understand, for fixed d, the Simpson moduli spaces M_{dm+c} it is enough to understand at most $\lfloor d/2 \rfloor + 1$ different moduli spaces.

For $d \leq 3$ the fine moduli spaces M_{dm+c} are completely understood. By [2, Théorème 5.1] $M_{dm+c} \cong \mathbb{P}(S^d V^*)$ for $d = 1$, and $d = 2$. For $d = 3$, M_{3m+1} is isomorphic to the universal cubic plane curve

$$\{(C, p) \in \mathbb{P}(S^3 V^*) \times \mathbb{P}_2 \mid p \in C\}.$$
These are the simplest and rather trivial examples of the Simpson moduli spaces of planar 1-dimensional sheaves. Each of them can be endowed with an open covering such that the coordinates in every open chart come from some globally defined objects, which can be called global coordinates (or moduli, using the original terminology of Riemann), and allow one to define the subvarieties of the moduli space in terms of equations in these coordinates.

Indeed, for \(\mathbb{P}(S^d V^*) \), which is constructed as \(S^d V^*/GL_1() \), every basis of \(S^d V^* \) provides global homogeneous coordinates of \(\mathbb{P}(S^d V^*) \). Being a universal planar curve, the moduli spaces \(M_{3m \pm 1} \) have a nice description as a quotient (by a non-reductive group) of the variety of matrices

\[
A = \left(\begin{array}{cc} x & y \\ p & q \end{array} \right), \quad x, y \in H^0(\mathbb{P}_2, O_{\mathbb{P}_2}(1)), \quad p, q \in H^0(\mathbb{P}_2, O_{\mathbb{P}_2}(2)), \quad \det A \neq 0, \quad x \wedge y \neq 0,
\]

which provides convenient global coordinates for \(M_{3m \pm 1} \) and allows one to study the moduli spaces in more details (cf. [5]).

By [3] one has the isomorphisms \(M_{4m+b} \cong M_{4m-1} \) for \(d = 4 \) and odd \(b \). In [6] a description of the moduli space \(M_{4m-1} \) is given in terms of two strata (Brill-Noether loci): an open stratum \(M_0 \) and its closed complement \(M_1 \) in codimension 2. The open stratum is naturally described as an open subvariety of a projective bundle \(B \rightarrow N \) associated to a vector bundle of rank 12 over a smooth 6-dimensional projective variety \(N \). The closed stratum is the universal quartic planar curve. Each stratum is described as a geometric quotient of a set of morphisms of locally free sheaves modulo non-reductive algebraic groups. The morphisms come from the Beilinson’s resolutions and can be seen as coordinates (parameters, moduli) of the corresponding strata.

The main result of this paper

The aim of this paper is to “glue together” the parameterizations of the strata from [6] and to equip \(M := M_{4m-1} \), and hence all fine Simpson moduli spaces of 1-dimensional sheaves supported on plane quartics, with open charts parameterized by convenient coordinates.

The main result of this paper is an observation that every sheaf from \(M \) can be given as the cokernel of a morphism

\[
2O_{\mathbb{P}_2}(-3) \oplus 3O_{\mathbb{P}_2}(-2) \rightarrow O_{\mathbb{P}_2}(-2) \oplus 3O_{\mathbb{P}_2}(-1),
\]

which provides a common parameter space for the strata from [6] and gives a simple way to deform the sheaves from \(M_0 \) to the ones from \(M_1 \). This parametrization can be seen as a natural generalization of the parametrizations of the strata from [6]. The new parameter space is deduced from the closer understanding of the complement \(B' \) of \(M_0 \) in \(B \). The way we obtain it immediately provides over \(\widetilde{B} := Bl_{M_0} B \) a family of stable sheaves on \(\mathbb{P}_2 \) with Hilbert polynomial \(4m - 1 \) and thus a map from \(\widetilde{B} \) to \(M \). Under this map the exceptional divisor \(D \) of the blow-up \(\widetilde{B} \rightarrow B \) is a \(\mathbb{P}_1 \)-bundle over the closed stratum \(M_1 \), which leads to the statement of Theorem 3.1 that \(M \) is a blow-down to \(M_1 \) of the exceptional divisor \(D \) of the blow-up \(\widetilde{B} \). This result coincides with the statement of [7, Theorem 3.1], which appeared earlier. Our methods are, however, significantly different.

Theorem 3.1 can be also discovered by just looking at the geometric data involved and seeing the corresponding statement, which provides a very geometric proof. The exceptional divisor \(D \) can be naturally seen as a projective bundle over the closed stratum \(M_1 \) with fibres being projective lines. The variety \(\widetilde{B} \) can be blown down along these fibres.
Structure of the paper

In Section 1 we review the description of the strata of M from [6] and give a description of the degenerations to the closed stratum. In Section 2 we present a geometric description of the fibres of the bundle $\mathbb{B} \to N$ and construct local charts around the closed subvariety $\mathbb{B}' := \mathbb{B} \setminus M_0$. As a side remark we provide here a simple computation of the Poincaré polynomial of M that follows directly from [8] and [6]. The geometric description of the fibres of $\mathbb{B} \to N$ allows one to describe the blow up $\mathbb{B} \to \overline{\mathbb{B}}$ geometrically and to see Theorem 3.1 in Section 3 by just looking at the geometric data involved. In Section 4 we construct a common parameter space for the sheaves in M and rigorously prove Theorem 3.1.

Some notations and conventions

Dealing with homomorphisms between direct sums of line bundles and identifying them with matrices, we consider the matrices acting on elements from the right. In particular, a section of a direct sum of line bundles $\mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_m$ is identified with the row-vector of sections of \mathcal{E}_i, $i = 1, \ldots, m$.

1 M_{4m-1} as a union of two strata

As shown in [2] $M = M_{4m-1}$ is a smooth projective variety of dimension 17. By [6] M is a disjoint union of two strata M_1 and M_0 such that M_1 is a closed subvariety of M of codimension 2 and M_0 is its open complement.

1.1 Closed stratum

The closed stratum M_1 is a closed subvariety of M of dimension 2 given by the condition $h^0(\mathcal{E}) \neq 0$.

The sheaves from M_1 possess a locally free resolution

$$0 \to 2\mathcal{O}_{\mathbb{P}_2}(-3) \xrightarrow{(z_1, q_1)} \mathcal{O}_{\mathbb{P}_2}(-2) \oplus \mathcal{O}_{\mathbb{P}_2} \to \mathcal{E} \to 0,$$

with linear independent linear forms z_1 and z_2 on \mathbb{P}_2. M_1 is a geometric quotient of the variety of injective matrices (z_1, q_1) as above by the non-reductive group

$$(\text{Aut}(2\mathcal{O}_{\mathbb{P}_2}(-3)) \times \text{Aut}(\mathcal{O}_{\mathbb{P}_2}(-2) \oplus \mathcal{O}_{\mathbb{P}_2}))^*.$$

The points of M_1 are the isomorphism classes of sheaves that are non-trivial extensions

$$0 \to \mathcal{O}_C \to \mathcal{E} \to \mathcal{O}_{(p)} \to 0,$$

where C is a plane quartic given by the determinant of (z_1, q_1) from (1) and $p \in C$ a point on it given as the common zero set of z_1 and z_2.

This describes M_1 as the universal plane quartic, the quotient map is given by

$$\left(\begin{array}{c} z_1 \\ z_2 \\ q_1 \\ q_2 \end{array}\right) \mapsto (C, p), \quad C = Z(z_1q_2 - z_2q_1), \quad p = Z(z_1, z_2).$$

M_1 is smooth of dimension 15.

Let M_{11} be the closed subvariety of M_1 defined by the condition that p is contained on a line L contained in C. Equivalently, a matrix from (1) represents a point in M_{11} if and only if it lies in the orbit of a matrix of the form $(z_1, 0, z_2, q_2)$. The dimension of M_{11} is 12.

Lemma 1.1. The sheaves in M_{11} are non-trivial extensions

$$0 \to \mathcal{O}_L(-2) \to \mathcal{F} \to \mathcal{O}_{C'} \to 0,$$

where C' is a cubic and L is a line.
Proof. Consider the isomorphism class of F with resolution

$$0 \to 2\mathcal{O}_{P_2}(-3) \xrightarrow{(l \ 0)^{w \ h}} \mathcal{O}_{P_2}(-2) \oplus \mathcal{O}_{P_2} \to F \to 0.$$ \hfill (3)

This gives the commutative diagram with exact rows and columns.

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\mathcal{O}_{P_2}(-3) & \mathcal{O}_{P_2}(-2) & \mathcal{O}_L(-2) & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
2\mathcal{O}_{P_2}(-3) & 2\mathcal{O}_{P_2}(-2) & \mathcal{O}_{P_2} & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\mathcal{O}_{P_2}(-3) & \mathcal{O}_{P_2} & \mathcal{O}_C & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0
\end{array}
\]

Therefore, F is an extension

$$0 \to \mathcal{O}_L(-2) \to F \to \mathcal{O}_C \to 0,$$

which is nontrivial since F is stable. This proves the required statement. \qed

Let M_{10} denote the open complement of M_{11} in M_1.

1.2 Open stratum

The open stratum M_0 is the complement of M_1 given by the condition $h^0(E) = 0$, it consists of the isomorphism classes $[E_A]$ of the cokernels E_A of the injective morphisms

$$\mathcal{O}_{P_2}(-3) \oplus 2\mathcal{O}_{P_2}(-2) \xrightarrow{A} 3\mathcal{O}_{P_2}(-1)$$ \hfill (4)

such that the (2×2)-minors of the linear part \((\frac{z_0}{w_0}, \frac{z_1}{w_1}; \frac{z_2}{w_2})\) of $A = \left(\frac{g_0}{w_0}, \frac{g_1}{w_1}; \frac{g_2}{w_2}\right)$ are linear independent.

1.2.1 M_0 as a geometric quotient

M_0 is an open subvariety in the geometric quotient \mathbb{B} of the variety \mathcal{W}^d of stable matrices as in (4) (see [8, Proposition 7.7] for details) by the group

$$\text{Aut}(\mathcal{O}_{P_2}(-3) \oplus 2\mathcal{O}_{P_2}(-2)) \times \text{Aut}(3\mathcal{O}_{P_2}(-1)).$$

Its complement in \mathbb{B} is a closed subvariety \mathbb{B}' corresponding to the matrices with zero determinant.

1.2.2 Extensions

If the maximal minors of the linear part of A corresponding to a point $[E_A]$ in M_0 have a linear common factor, say l, then $\det(A) = l \cdot h$ and E_A is in this case a non-split extension

$$0 \to \mathcal{O}_L(-2) \to E_A \to \mathcal{O}_C \to 0,$$ \hfill (5)
where \(L = Z(l), C' = Z(h) \).

The subvariety \(M_{01} \) of such sheaves is closed in \(M_0 \) and locally closed in \(M \). Its boundary coincides with \(M_{11} \).

1.2.3 Twisted ideals of 3 points on a quartic

Let \(M_{00} \) denote the open complement of \(M_{01} \) in \(M_0 \). In this case the maximal minors of the linear part of \(A \) are coprime, and the cokernel \(E_A \) of (4) is a part of the exact sequence

\[
0 \to E_A \to \mathcal{O}_C(1) \to \mathcal{O}_Z \to 0,
\]

where \(C \) is a planar quartic curve given by the determinant of \(A \) from (4) and \(Z \) is the zero dimensional subscheme of length 3 given by the maximal minors of the linear submatrix of \(A \). Notice that in this case the subscheme \(Z \) does not lie on a line.

1.3 Degenerations to the closed stratum

Proposition 1.2. 1) Every sheaf in \(M_1 \) is a degeneration of sheaves from \(M_{00} \). This corresponds to a degeneration of \(Z \subseteq C \), where \(Z \) is a zero-dimensional scheme of length 3 not lying on a line and \(C \) is a quartic curve, to a flag \(Z \subseteq C \) with \(Z \) contained in a line \(L \) that is not included in \(C \). The limit corresponds to the point in \(M_1 \) described by the point \((L \cap C) \setminus Z \) on the quartic curve \(C \).

2) The sheaves from \(M_1 \) given by pairs \((C, p) \) such that \(p \) belongs to a line \(L \) contained in \(C \), i.e., those from \(M_{11} \), are also degenerations of sheaves from \(M_{01} \). This corresponds to degenerations of extensions (5) without sections to extensions with sections.

The proof follows from the considerations below.

1.3.1 Degenerations along \(M_{00} \)

Fix a curve \(C \subseteq \mathbb{P}_2 \) of degree 4, \(C = Z(f), f \in \Gamma(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(4)) \). Let \(Z \subseteq C \) be a zero-dimensional scheme of length 3 contained in a line \(L = Z(l), l \in \Gamma(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(1)) \). Let \(\mathcal{F} = \mathcal{I}_Z(1) \) be the twisted ideal sheaf of \(Z \) in \(C \) so that there is an exact sequence

\[
0 \to \mathcal{F} \to \mathcal{O}_C(1) \to \mathcal{O}_Z \to 0.
\]

Lemma 1.3. *In the notations as above, the twisted ideal sheaf \(\mathcal{F} = \mathcal{I}_Z(1) \) is semistable if and only if \(L \) is not contained in \(C \).*

Proof. Let us construct a locally free resolution of \(\mathcal{F} \). Let \(g \in \Gamma(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(3)) \) such that \(\mathcal{O}_Z \) is given by the resolution

\[
0 \to \mathcal{O}_{\mathbb{P}_2}(-4) \xrightarrow{(l,g)} \mathcal{O}_{\mathbb{P}_2}(-3) \oplus \mathcal{O}_{\mathbb{P}_2}(-1) \xrightarrow{(l,g)} \mathcal{O}_{\mathbb{P}_2} \to \mathcal{O}_Z \to 0.
\]

Since \(Z = Z(l,g) \) is contained in \(C = Z(f) \), one concludes that \(f = lh - wg \) for some \(w \in \Gamma(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(1)) \) and \(h \in \Gamma(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(3)) \). This gives the following commutative diagram with exact rows and columns.
Therefore, \mathcal{F} possesses a locally free resolution

$$0 \to 2\mathcal{O}_{\mathbb{P}^2}(-3) \xrightarrow{\begin{pmatrix} l & g \\ w & h \end{pmatrix}} \mathcal{O}_{\mathbb{P}^2}(-2) \oplus \mathcal{O}_{\mathbb{P}^2} \to \mathcal{F} \to 0.$$

In particular, if l and w are linear independent, which is true if and only if f is not divisible by l, this is a resolution of type (1), hence \mathcal{F} is a sheaf from M_1.

If l and w are linear dependent, then without loss of generality we can assume that $w = 0$, which gives an extension

$$0 \to \mathcal{O}_{C'} \to \mathcal{F} \to \mathcal{O}_L(-2) \to 0, \quad C' = Z(h),$$

and thus a destabilizing subsheaf $\mathcal{O}_{C'}$ of \mathcal{F}. This concludes the proof.

Let $H(3, 4)$ be the flag Hilbert scheme of zero-dimensional schemes of length 3 on plane projective curves $C \subseteq \mathbb{P}^2$ of degree 4. Let $H'(3, 4) \subseteq H(3, 4)$ be the subscheme of those flags $Z \subseteq C$ such that Z lies on a linear component of C. Using the universal family on $H(3, 4)$, one obtains a natural morphism

$$H(3, 4) \times H'(3, 4) \to M,$$

whose image coincides with $M \setminus M_{01}$.

Its restriction to the open subvariety $H_0(3, 4)$ of $H(3, 4)$ of flags $Z \subseteq C \subseteq \mathbb{P}^2$ such that Z does not lie on a line gives an isomorphism

$$H_0(3, 4) \to M_{00}.$$

Over M_1 one gets one-dimensional fibres: over an isomorphism class in M_1, which is uniquely defined by a point $p \in C$ on a curve of degree 4, the fibre can be identified with the variety of lines through p that are not contained in C, i.e., with a projective line without up to 4 points.

Remark 1.4. Notice that the subvariety $H'(3, 4)$ is a \mathbb{P}^3-bundle over $\mathbb{P} V^* \times \mathbb{P} S^* V^*$, the fibre over the pair (L, C') of a line L and a cubic curve C' is the Hilbert scheme $L^{[3]}$.

As shown in [9, Theorem 3.3 and Proposition 4.4], the blow-up of $H(3, 4)$ along $H'(3, 4)$ can be blown down along the fibres $L^{[3]}$ to the blow-up $\overline{M} := \text{Bl}_{M_1} M$.

Unauthenticated
Download Date | 6/2/19 4:55 AM
1.3.2 Degenerations along M_{01}

For a fixed line L and a fixed cubic curve C' one can compute $\text{Ext}^1(\mathcal{O}_C, \mathcal{O}_L(-2)) \cong \mathbb{P}^3$. Therefore, using [10] one gets a projective bundle P over $\mathbb{P}V^* \times \mathbb{P}S^3 V^*$ with fibre \mathbb{P}_2 and a universal family of extensions on it parameterizing the extensions

$$0 \to \mathcal{O}_L(-2) \to \mathcal{F} \to \mathcal{O}_{C'} \to 0, \quad L \in \mathbb{P}V^*, C' \in \mathbb{P}S^3 V^*.$$

This provides a morphism $P \to M$ and describes the degenerations of sheaves from M_{01} to sheaves in M_{11}.

2 Description of \mathbb{B}

\mathbb{B} is a projective bundle associated to a vector bundle of rank 12 over the moduli space $N = N(3; 2, 3)$ of stable (2×3) Kronecker modules, i.e., over the GIT-quotient of the space V^s of stable (2×3)-matrices of linear forms on \mathbb{P}_2 by $\text{Aut}(2\mathcal{O}_{\mathbb{P}_2}(-2)) \times \text{Aut}(3\mathcal{O}_{\mathbb{P}_2}(-1))$.

The projection $\mathbb{B} \to N$ is induced by

$$\begin{pmatrix} q_0 & q_1 & q_2 \\ w_0 & w_1 & w_2 \end{pmatrix} \mapsto \begin{pmatrix} z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}.$$

For more details see [8, Proposition 7.7].

2.1 The base N

The subvariety $N' \subseteq N$ corresponding to the matrices whose minors have a common linear factor is isomorphic to $\mathbb{P}_2^3 = \mathbb{P}V^*$, the space of lines in \mathbb{P}_2, such that a line corresponds to the common linear factor of the minors of the corresponding Kronecker module $(z_0^2 : z_1^2 : z_2^2)$.

The blow up of N along N' is isomorphic to the Hilbert scheme $H = \mathbb{P}_2^{[3]}$ of 3 points in \mathbb{P}_2 (cf. [11, Théorème 4]). The exceptional divisor $H' \subseteq H$ is a \mathbb{P}_2-bundle over N', whose fibre over $(l) \in \mathbb{P}_2$ is the Hilbert scheme $L^{[3]}$ of 3 points on $L = Z(l)$. The class in N of a Kronecker module $(z_0^2 : z_1^2 : z_2^2)$ with coprime minors corresponds to the subscheme of 3 non-collinear points in \mathbb{P}_2 defined by the minors of the matrix.

2.2 The fibres of $\mathbb{B} \to N$

2.2.1 Fibres over $N \setminus N'$

A fibre over a point from $N \setminus N'$ can be seen as the space of plane quartics through the corresponding subscheme of 3 non-collinear points. Indeed, consider a point from $N \setminus N'$ given by a Kronecker module

![Fig. 1. Moduli space $M = M_{\lambda m - 1}(\mathbb{P}_2)$.](image-url)
A fibre over $\{z_0, z_1, z_2\}$ with coprime minors d_0, d_1, d_2. The fibre over such a point consists of the orbits of injective matrices

$$\begin{pmatrix} q_0 & q_1 & q_2 \\ z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}, \quad q_0, q_1, q_2 \in S^2 V^*,$$

under the group action of

$$\text{Aut}(O_{\mathbb{P}^2}(-3) \oplus 2O_{\mathbb{P}^2}(-2)) \times \text{Aut}(3O_{\mathbb{P}^2}(-1)).$$

If two matrices

$$\begin{pmatrix} q_0 & q_1 & q_2 \\ z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}, \quad \begin{pmatrix} q_0 & q_1 & q_2 \\ z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{pmatrix}$$

lie in the same orbit of the group action, then their determinants are equal up to a multiplication by a non-zero constant. Vice versa, if the determinants of two such matrices are equal, $q - Q = (q_0 - Q_0, q_1 - Q_1, q_2 - Q_2)$ lies in the syzygy module of $\left(\begin{smallmatrix} d_0 \\ d_1 \\ d_2 \end{smallmatrix} \right)$, which is generated by the rows of $\left(\begin{smallmatrix} z_0 & z_1 & z_2 \\ w_0 & w_1 & w_2 \end{smallmatrix} \right)$ by Hilbert-Burch theorem. This implies that $q - Q$ is a combination of the rows and thus the matrices lie on the same orbit.

2.2.2 Fibres over N'

A fibre over $\langle l \rangle \in N'$ can be seen as the join $J(L^*, \mathbb{P}S^3 V^*) \cong \mathbb{P}^{11}$ of $L^* \cong \mathbb{P}H^0(L, O_L(1)) \cong \mathbb{P}1$ and the space of plane cubic curves $\mathbb{P}(S^3 V^*) \cong \mathbb{P}9$. To see this assume $l = x_0$, i.e., $\langle x_0 \rangle$ is considered as the class of

$$\begin{pmatrix} -x_2 & 0 & x_0 \\ x_1 & -x_0 & 0 \end{pmatrix}.$$

Then the fibre over $\left(\begin{smallmatrix} -x_2 & 0 & x_0 \\ x_1 & -x_0 & 0 \end{smallmatrix} \right)$ is given by the orbits of matrices

$$\begin{pmatrix} q_0(x_0, x_1, x_2) & q_1(x_1, x_2) & q_2(x_1, x_2) \\ -x_2 & 0 & x_0 \\ x_1 & -x_0 & 0 \end{pmatrix}$$

(6)

and can be identified with the projective space $\mathbb{P}(2H^0(L, O_L(2)) \oplus S^2 V^*)$.

For a linear form $w = w(x_1, x_2)$ such that $q_2(x_1, x_2) = q_2(0, x_2) + x_1 \cdot w$, one can write

$$q_1(x_1, x_2) = q_1^1(x_1, x_2) - x_2 \cdot w, \quad q_2(x_1, x_2) = q_2^1(x_2) + x_1 \cdot w, \quad q_2^1(x_2) = q_2(0, x_2).$$

Abusing notations by renaming q_1^1 and q_2^1 into q_1 and q_2 respectively, rewrite the matrix (6) as

$$\begin{pmatrix} q_0(x_0, x_1, x_2) & q_1(x_1, x_2) - x_2 \cdot w & q_2(x_1, x_2) + x_1 \cdot w \\ -x_2 & 0 & x_0 \\ x_1 & -x_0 & 0 \end{pmatrix}.$$

Its determinant equals

$$x_0 \cdot (x_0 \cdot q_0(x_0, x_1, x_2) + x_1 \cdot q_1(x_1, x_2) + x_2 \cdot q_2(x_2)).$$

This allows to reinterpret the fibre as the projective space

$$\mathbb{P}(H^0(L, O_L(1)) \otimes S^3 V^*) \cong J(L^*, \mathbb{P}S^3 V^*).$$

$J(L^*, \mathbb{P}(S^3 V^*)) \setminus L^*$ is a rank 2 vector bundle over $\mathbb{P}(S^3 V^*)$, whose fibre over a cubic curve $C' \in \mathbb{P}S^3 V^*$ is identified with the isomorphism classes of the extensions (5) from M_{01} with fixed L and C'. This corresponds to the projective plane joining C' with L^* inside the join $J(L^*, \mathbb{P}(S^3 V^*))$.
Equivalently (cf. [6, p. 36]), varieties to P 2.4 Side remark: the Poincaré polynomial of the fibre such that $Pv(X) = P(X)$ for smooth projective varieties X. In particular, this means that $Pv(X) = P(X)$ for smooth projective varieties X. The following is a direct consequence of [8, Proposition 7.7], slightly more straightforward than the ones from [9, Corollary 5.2] and [12, Theorem 5.2]. Notice that has been also computed using a torus action on Z. Proof. Since M is a smooth projective variety, $P(M) = P_r(M)$. Since M_1 is a closed subvariety in M and M_0 is its open complement, since \mathcal{B}' is a closed subvariety in \mathcal{B} and its complement $\mathcal{B} \setminus \mathcal{B}'$ is isomorphic to M_0, we
Lemma 2.4. \(P_v(M) = P_v(M_0) + P_v(M_1) \), \(P_v(\mathbb{B}) = P_v(\mathbb{B} \setminus \mathbb{B}') + P_v(\mathbb{B}') \), \(P_v(M_0) = P_v(\mathbb{B} \setminus \mathbb{B}') \).

Therefore, \(P_v(M) = P_v(M_0) + P_v(M_1) = P_v(\mathbb{B} \setminus \mathbb{B}') + P_v(M_1) = P_v(\mathbb{B}) - P_v(\mathbb{B}') + P_v(M_1) \). Since \(\mathbb{B} \) is a projective bundle over \(N \) with fibre \(\mathbb{P}_{11} \), one gets \(P_v(\mathbb{B}) = P_v(N) \cdot P_v(\mathbb{P}_{11}) \). Similarly, since \(\mathbb{B}' \) is a \(\mathbb{P}_1 \)-bundle over \(N' \equiv \mathbb{P}_2 \) and the universal quartic \(M_1 \) is a \(\mathbb{P}_{13} \)-bundle over \(\mathbb{P}_2 \), we obtain \(P_v(\mathbb{B}') = P_v(\mathbb{P}_2) \cdot P_v(\mathbb{P}_1) \) and \(P_v(M_1) = P_v(\mathbb{P}_2) \cdot P_v(\mathbb{P}_{13}) \). Therefore,

\[
P_v(M) = P_v(N) \cdot P_v(\mathbb{P}_{11}) - P_v(\mathbb{P}_2) \cdot P_v(\mathbb{P}_1) + P_v(\mathbb{P}_2) \cdot P_v(\mathbb{P}_{13})
\]

By [14, page 90] the (virtual) Poincaré polynomial of \(H \) is \(P_v(H) = P(H) = 1 + 2t^2 + 5t^4 + 6t^6 + 5t^8 + 2t^{10} + t^{12} \). As \(H \) is a blow-up of \(N \) at \(N' \) by [11, Théorème 4], one gets \(P_v(N) = P_v(N \setminus N') + P_v(N') = P_v(H \setminus H') + P_v(N') = P_v(H) - P_v(H') + P_v(N') = P_v(H) - P_v(\mathbb{P}_2) \cdot P_v(\mathbb{P}_1) + P_v(\mathbb{P}_2) \) because \(H' \) is a \(\mathbb{P}_3 \)-bundle over \(N' \). Using this and \(P(\mathbb{P}_n) = \frac{1-(-1)^{n+1}}{1-t} \), we get the result.

2.5 Local charts around \(\mathbb{B}' \)

Lemma 2.2. Let \(L \in N' \) be the class of the Kronecker module

\[
\begin{pmatrix}
-x_2 & 0 & x_0 \\
1 & -x_0 & 0
\end{pmatrix}.
\]

Then there is an open neighbourhood of \(L \) that can be identified with an open neighbourhood \(U \) of zero in the affine space \(^6 \) via the map \(^6 \to U \to N \),

\[
(\alpha, \beta, a, b, c, d) \mapsto \begin{pmatrix}
-x_2 & cx_1 & \bar{x}_0 \\
x_1 & -\bar{x}_0 + ax_1 + bx_2 & dx_2
\end{pmatrix},
\]

with \(\bar{x}_0 = x_0 + \alpha x_1 + \beta x_2 \), which establishes a local section of the quotient \(\mathbb{Y}^6 \to N \).

Proof. In some open neighbourhood \(U \) of zero in \(^6 \) the morphism

\[
U \to \mathbb{Y}^6, \quad (\alpha, \beta, a, b, c, d) \mapsto \begin{pmatrix}
-x_2 & cx_1 & \bar{x}_0 \\
x_1 & -\bar{x}_0 + ax_1 + bx_2 & dx_2
\end{pmatrix}
\]

is well-defined. Notice that two Kronecker modules of the form

\[
\begin{pmatrix}
-x_2 & cx_1 & \bar{x}_0 \\
x_1 & -\bar{x}_0 + ax_1 + bx_2 & dx_2
\end{pmatrix}
\]

can lie in the same orbit of the group action if and only if the matrices are equal. Therefore, the morphism

\[
(\alpha, \beta, a, b, c, d) \mapsto \begin{pmatrix}
-x_2 & cx_1 & \bar{x}_0 \\
x_1 & -\bar{x}_0 + ax_1 + bx_2 & dx_2
\end{pmatrix}
\]

is injective.

\[\square\]

Remark 2.3. By abuse of notation we identify \(U \) with its image in \(N \).

Lemma 2.4. \(N' \) is cut out in \(U \) by the equations \(a = b = c = d = 0 \).

Proof. The maximal minors of \(\begin{pmatrix}
-x_2 & cx_1 & \bar{x}_0 \\
x_1 & -\bar{x}_0 + ax_1 + bx_2 & dx_2
\end{pmatrix} \) are

\[
cdx_1x_2 + \bar{x}_0(\bar{x}_0 - ax_1 - bx_2), \quad -dx_2^2 - \bar{x}_0x_1, \quad \bar{x}_2(\bar{x}_0 - ax_1 - bx_2) - cx_1^2.
\]

Clearly these minors have a common linear factor if \(a, b, c, d \) vanish. On the other hand the condition \(c = d = 0 \) is necessary to ensure the reducibility of these quadratic forms. If \(c = d = 0 \), the conditions \(a = b = 0 \) are necessary for the minors to have a common factor.
Lemma 2.5. The restriction of \mathbb{B} to U is a trivial \mathbb{P}_1-bundle. Identifying \mathbb{P}_1 with the projective space

$$\mathbb{P}(S^2 V^* \oplus 2 \text{Span}(x_1^2, x_1x_2, x_2^2)),$$

i.e., a point in \mathbb{P}_1 is identified with the class of the triple of quadratic forms

$$(q_0(x_0, x_1, x_2), q_1(x_1, x_2), q_2(x_1, x_2)),$$

one can identify $U \times \mathbb{P}_1$, and hence $\mathbb{B}|_U$, with the classes of matrices

$$\begin{pmatrix}
q_0(x_0, x_1, x_2) & q_1(x_1, x_2) & q_2(x_1, x_2) \\
-x_2 & cx_1 & -\bar{x}_0 \\
x_1 & -\bar{x}_0 & dx_2
\end{pmatrix}. \tag{9}
$$

Assuming one of the coefficients of q_0, q_1, q_2 equal to 1, we get local charts of the form $U \times 11$ and local sections of the quotient $\mathbb{W}^2 \to \mathbb{B}$.

Proof. It is enough to notice that as in (6) one can get rid of x_0 in the expressions of q_1 and q_2. \hfill \Box

Charts $\mathbb{B}(\gamma)$ and $\mathbb{B}(\delta)$

In order to get charts around $[A] \in \mathbb{B}'$,

$$A = \begin{pmatrix}
0 & -x_2 \cdot w \cdot x_1 \cdot w \\
-x_2 & 0 \cdot \bar{x}_0 \\
x_1 & -\bar{x}_0 \cdot 0
\end{pmatrix}, \quad w = \gamma x_1 + \delta x_2, \quad (\gamma, \delta) \in \mathbb{P}_1,$$

rewrite (9), similarly to what we already did with (6) in 2.2.2, in the form

$$\begin{pmatrix}
q_0(x_0, x_1, x_2) & q_1(x_1, x_2) & -x_2 \cdot w \cdot q_2(x_1, x_2) + x_1 \cdot w \\
-x_2 & cx_1 & -\bar{x}_0 \\
x_1 & -\bar{x}_0 + ax_1 + bx_2 & dx_2
\end{pmatrix}. \tag{10}
$$

Putting $\gamma = 1$ or $\delta = 1$, we get charts around \mathbb{B}', each isomorphic to $U \times \times 10$. Denote them by $\mathbb{B}(\gamma)$ and $\mathbb{B}(\delta)$ respectively. Their coordinates are those of U together with δ respectively γ and the coefficients of q_i, $i = 0, 1, 2$.

The equations of \mathbb{B}' are those of N' in U, i.e., $a = b = c = d = 0$, and the conditions imposed by vanishing of q_0, q_1, q_2.

Remark 2.6. Notice that these equations generate the ideal given by the vanishing of the determinant of (10).

3 Description of \mathcal{M}

Consider the blow-up $\bar{\mathbb{B}} = \text{Bl}_{\mathbb{B}} \mathbb{B}$. Let D denote its exceptional divisor.

Theorem 3.1. $\bar{\mathbb{B}}$ is isomorphic to the blow-up $\bar{\mathcal{M}} := \text{Bl}_{\mathcal{M}} \mathcal{M}$. The exceptional divisor of $\bar{\mathcal{M}}$ corresponds to D under this isomorphism. The fibres of the morphism $D \to \mathcal{M}_1$ over the point of \mathcal{M}_1 represented by a point p on a quartic curve C is identified with the projective line of lines in \mathbb{P}_2 passing through p.

3.1 A rather intuitive explanation

Before rigorously proving this, let us explain how to arrive to Theorem 3.1 and see it just by looking at the geometric data involved. What follows in not completely rigorous but provides, in our opinion, a nice geometric picture.
Blowing up \mathbb{B} along \mathbb{B}' substitutes \mathbb{B}' by the projective normal bundle of \mathbb{B}'. So a point of \mathbb{B}' represented by a line $L \in \mathbb{P}_2$ and a point $p \in L$, which is encoded by some $\langle w \rangle \in \mathbb{P}H^0(L, \mathcal{O}_L(1))$, is substituted by the projective space $D_{(L,p)}$ of the normal space $T_{(L,p)} \mathbb{B}/T_{(L,p)} \mathbb{B}'$ to \mathbb{B}' at (L, p).

As \mathbb{B} is a projective bundle over N, and \mathbb{B}' is a \mathbb{P}_1-bundle over N', the normal space is a direct sum of the normal spaces along the base and along the fibre. Therefore, $D_{(L,p)}$ is the join of the corresponding projective spaces: of $\mathbb{P}_3 = L^{[3]}$ (normal projective space to N' in N at $L \in N'$) and $\mathbb{P}_9 = \mathbb{P}(S^3V^*)$ (normal projective space to L^* in $J(L^*, \mathbb{P}(S^3V^*))$ at $p \in L \equiv L^*$; notice that the normal projective bundle of $L^* \subseteq J(L^*, \mathbb{P}(S^3V^*))$, i.e., $\mathbb{P}_1 \subseteq \mathbb{P}_1$, is trivial).

The fibre $J(L^*, \mathbb{P}(S^3V^*))$ of $\mathbb{B} \to N$ over $L \in N'$ is substituted under the blow-up by the fibre that consists of two components: the first component is the blow-up of $J(L^*, \mathbb{P}(S^3V^*))$ along L^*, the second one is a projective bundle over L^* with the fibre $\mathbb{P}_1 = J(L^{[3]}, \mathbb{P}(S^3V^*))$, the components intersect along $L^* \times \mathbb{P}(S^3V^*)$.

Fig. 3. The fibre of \mathbb{B} over $L \in N'$.

The space $L^{[3]}$ is naturally identified with the projective space of cubic forms on L^* whereas $\mathbb{P}(S^3V^*)$ is clearly the space of cubic curves on \mathbb{P}_2.

Assume $L = Z(x_0)$ such that $\langle x_0, x_1, x_2 \rangle$ is a basis of $V^* \cong H^0(\mathbb{P}_2, \mathcal{O}_{\mathbb{P}_2}(1))$. Identifying x_1 and x_2 with their images in $H^0(L, \mathcal{O}_L(1))$, $\langle x_1, x_2 \rangle$ is a basis of $H^0(L, \mathcal{O}_L(1))$.

We conclude that the join of $L^{[3]}$ and $\mathbb{P}S^3V^*$ can be identified with the projective space corresponding to the vector space

$$\{\lambda \cdot x_0 h + \lambda' \cdot w g \mid h(x_0, x_1, x_2) \in S^3V^*, g(x_1, x_2) \in H^0(L, \mathcal{O}_L(3)), (\lambda, \lambda') \in \mathbb{C} \},$$

i.e., the space of planar quartic curves through the point $p = Z(x_0, w)$.

So the exceptional divisor of the blow-up $\text{Bl}_{\mathbb{P}3} \mathbb{B}$ is a projective bundle with fibre over (L, p) being interpreted as the space of quartic curves through p. This way we obtain a map from the exceptional divisor to the universal quartic M_1. Its fibre over a pair $p \in C$ is identified with the space of lines $L \in \mathbb{P}_2$ through p, i.e., with a projective line. Contracting the exceptional divisor along these lines one gets M. The contraction is possible by [15–17], which can be seen as follows.

The fibre of $D \to M_1$ over a pair $p \in C$ may be identified with the fibre \mathbb{B}'_p over $p \in \mathbb{P}_2$ of the map $\mathbb{B}' \to \mathbb{P}_2$ given by the projection to the second factor (cf. (7)). Every two points (L, p) and (L', p) of $\mathbb{B}'_p \subseteq \mathbb{B}'$ are substituted by the projective spaces $J(L^{[3]}, \mathbb{P}(S^3V^*))$ and $J(L'[3], \mathbb{P}(S^3V^*))$ respectively, each of which is naturally identified with the space of quartics through p. Assume without loss of generality $p = (0, 0, 1)$.

The fibre \mathbb{B}'_p in this case is identified with the space of lines in \mathbb{P}_2 through p, i.e., with the projective line in $N' = \mathbb{P}_2 = \mathbb{P}V^*$ consisting of classes of linear forms $\alpha x_0 + \beta x_1$, $(\alpha, \beta) \in \mathbb{P}_1$. The fibre has a standard covering $\mathbb{B}'_{p,0} = \{x_0 + \beta x_1\}$, $\mathbb{B}'_{p,1} = \{\alpha x_0 + x_1\}$, which is induced by the standard covering of \mathbb{P}_2. The elements of
The elements of the fibre corresponding to the points of \(\mathbb{B}_{p,0}' \) are the equivalence classes of matrices

\[
A_0 = \begin{pmatrix} 0 & x_1 \cdot x_2 & -x_1 \cdot x_3 \\ -x_2 & 0 & x_0 + \beta x_1 \\ x_1 & (x_0 + \beta x_1) & 0 \end{pmatrix}.
\]

The elements of the fibre corresponding to the points of \(\mathbb{B}_{p,1}' \) are the equivalence classes of matrices

\[
A_1 = \begin{pmatrix} 0 & x_0 \cdot x_2 & -x_0 \cdot x_3 \\ -x_2 & 0 & \alpha x_0 + x_1 \\ x_0 & (\alpha x_0 + x_1) & 0 \end{pmatrix}.
\]

In this way, we have chosen, so to say, the normal forms for the representatives of the points in the fibre \(\mathbb{B}' \). For \(\beta = \alpha^{-1} \), i.e., on the intersection of \(\mathbb{B}_{p,0}' \) and \(\mathbb{B}_{p,1}' \), these matrices are equivalent. One computes that \(gA_1h = A_0 \) for matrices

\[
g = \begin{pmatrix} \alpha^3 & \alpha^2 x_0 - \alpha x_1 & \alpha^2 x_2 \\ 0 & 1 & 0 \\ 0 & 0 & -\alpha \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 & 0 \\ \alpha^{-1} - \alpha^{-2} & 0 \\ 0 & 0 & \alpha^{-1} \end{pmatrix}
\]

with determinants

\[
\det g = -\alpha^4, \quad \det h = -\alpha^{-3}.
\]

Consider the automorphism \(\mathcal{W}' \xrightarrow{\xi} \mathcal{W}' \), \(A \mapsto gAh \). Then

\[
\det(\xi(A_1 + B_1)) = \alpha \cdot \det(A_1 + B_1).
\]

(11)

From (11) it follows that the restriction of the ideal sheaf of \(D \) to a fibre of the morphisms \(D \to M_1 \) is \(\mathcal{O}_{\mathbb{P}_1}(1) \). By [15–17], this means that one can blow down \(D \) in \(\mathbb{B}' \) along the map \(D \to M_1 \). This gives the blow down \(B_{\mathcal{W}'} : \bar{\mathbb{B}} \to M \) that contracts the exceptional divisor of \(B_{\mathcal{W}'} \mathbb{B} \) along all lines \(\mathbb{B}_p' \).

4 The main result

Now let us properly prove Theorem 3.1 by presenting here the main result of this paper.

4.1 Exceptional divisor \(D \) and quartic curves

Notice that the subvariety \(\mathcal{W}' \) in \(\mathcal{W}' \) parameterizing \(\mathbb{B}' \) is given by the condition \(\det A = 0 \). \(\mathbb{B}' \) can be seen as the indeterminacy locus of the rational map \(\mathbb{B} \to \mathbb{P}^t \mathbb{P}^t V^* \), \([A] \mapsto (\det(A)) \). This way we realize \(\mathbb{B}' \) as a subvariety in \(\mathbb{B} \times \mathbb{P}^t \mathbb{P}^t V^* \) (the closure of the graph of \(\mathbb{B} \to \mathbb{P}^t \mathbb{P}^t V^* \)) and obtain a morphism \(\mathbb{B} \to \mathbb{P}^t \mathbb{P}^t V^* \).

Lemma 4.1. 1) The restriction of \(\mathbb{B} \to \mathbb{P}^t \mathbb{P}^t V^* \) to \(D \) maps a point of \(D \) over a point \(p \in \mathbb{P}_2 \) (via the map \(D \to \mathbb{B}' \to \mathbb{P}_2 \)) to a quartic curve through \(p \), i.e., there is a morphism \(D \to M_1 \subseteq \mathbb{P}_2 \times \mathbb{P}^t \mathbb{P}^t V^* \).

2) The fibre \(D_{(t,p)} \) of \(D \to \mathbb{B}' \) over \((L, p) \in \mathbb{P}^t_2 \times \mathbb{P}_2, p \in L \), is isomorphic via the map \(\mathbb{B} \to \mathbb{P}^t \mathbb{P}^t V^* \) to the linear subspace in \(\mathbb{P}^t \mathbb{P}^t V^* \) of curves through \(p \).

3) The morphism \(D \to M_1 \) is a \(\mathbb{P}_1 \)-bundle over \(M_1 \), its fibre over a point of \(M_1 \) given by a pair \(p \in C \) can be identified with the fibre of \(\mathbb{B}' \to \mathbb{P}_2 \) over \(p \).

Proof. 1) Let \([A] \in \mathbb{B}' \) with \(A \) as in (8) and let \(a_0, a_1, a_2 \) be the rows of \(A \). Let \(B \) be a tangent vector at \(A \), which can be identified with a morphism of type (4). Let \(b_0, b_1, b_2 \) be its rows. Then, since \(\det A = 0 \),

\[
\det(A + tB) = f_{A,B} \cdot t \pmod{t^2},
\]
for
\[f_{A,B} = \det \left(\frac{b_0}{a_1} \right) + \det \left(\frac{c_0}{a_1} \right) + \det \left(\frac{d_0}{b_1} \right). \]

Then \(f_{A,B} \) is a non-zero quartic form if \(B \) is normal to \(W' \). One computes
\[f_{A,B} = x_0^2 \sum_{i=0}^2 x_i b_{0i} - w(x_1 \sum_{i=0}^2 x_i b_{1i} + x_2 \sum_{i=0}^2 x_i b_{2i}) \]
and thus \(f_{A,B} \) vanishes at \(p \), which is the common zero point of \(x_0 \) and \(w \).

2) Since the map \(D_{(L,p)} \to \mathbb{P}S^2V' \) is injective, it is enough to notice that, for a fixed \(A \in W' \), every quartic form through \(p \) can be obtained by varying \(B \). This gives a bijection and thus an isomorphism from \(D_{(L,p)} \) to the space of quartics through \(p \).

3) Follows from 1) and 2). \(\square \)

4.2 Local charts

Let us describe \(\mathbb{B} \) over \(B(\delta) \) (cf. 2.5). Around points of \(D \) lying over \([A] \in B(\delta) \) there are 14 charts. For a fixed coordinate \(t \) of \(B(\delta) \) different from \(\alpha, \beta, \gamma, \) denote the corresponding chart of \(B_{\delta \cap \mathbb{B}(\delta)} B(\delta) \) by \(\mathbb{B}(t) \). Then \(\mathbb{B}(t) \) can be identified with the variety of triples \((A, t, B)\),
\[
A = \begin{pmatrix}
0 & -x_2 & (\gamma x_1 + x_2) & x_1 & (\gamma x_1 + x_2) \\
-x_2 & 0 & x_0 & \bar{x}_0 \\
x_1 & -\bar{x}_0 & 0 & 0
\end{pmatrix},
\]
\[
B = \begin{pmatrix}
q_0(x_0, x_1, x_2) & q_1(x_1, x_2) & q_2(x_2) \\
0 & cx_1 & 0 \\
0 & ax_1 + bx_2 & dx_2
\end{pmatrix},
\]
(12)
such that the coefficient of \(B \) corresponding to \(t \) equals 1 and \(A + t \cdot B \) belongs to \(\mathbb{B}(\delta) \). The blow-up map \(\mathbb{B}(t) \to \mathbb{B}(t) \) is given under this identification by sending a triple \((A, t, B)\) to \(A + t \cdot B \).

4.3 Family of \((4m - 1)\)-sheaves on \(\mathbb{B} \)

Notice that the cokernel of (4) is isomorphic to the cokernel of
\[
2\mathcal{O}_\mathbb{P}^2(-3) \oplus 3\mathcal{O}_\mathbb{P}^2(-2) \longrightarrow \mathcal{O}_\mathbb{P}^2(-2) \oplus 3\mathcal{O}_\mathbb{P}^2(-1).
\]

4.3.1 Local construction

Lemma 4.2. For \(t \neq 0 \) consider the matrix
\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & -wx_2 & wx_1 \\
0 & -x_2 & 0 & \bar{x}_0 \\
0 & x_1 & 0 & -\bar{x}_0 \\
1 & 0 & 0 & 0
\end{pmatrix} + t \cdot
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & q_0 & q_1 & q_2 \\
0 & y_0 & y_1 & y_2 \\
0 & z_0 & z_1 & z_2 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]
(13)
as a morphism $2\mathcal{O}_P(-3) \oplus 3\mathcal{O}_P(-2) \to \mathcal{O}_P(-2) \oplus 3\mathcal{O}_P(-1)$. Then its cokernel is isomorphic to the cokernel of

$$
\begin{pmatrix}
\tilde{x}_0 & x_1 y_0 + x_2 z_0 & x_1 y_1 + x_2 z_1 & x_1 y_2 + x_2 z_2 \\
w & q_0 & q_1 & q_2 \\
0 & -x_2 & 0 & \tilde{x}_0 \\
0 & x_1 & -\tilde{x}_0 & 0 \\
0 & 0 & x_2 & -x_1 \\
\end{pmatrix} + t \cdot
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

(14)

Proof. Acting by the automorphisms of $2\mathcal{O}_P(-3) \oplus 3\mathcal{O}_P(-2)$ on the left and by the automorphisms of $\mathcal{O}_P(-2) \oplus 3\mathcal{O}_P(-1)$ on the right of (13), we transform this matrix as follows:

\begin{align*}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & w x_2 w x_1 \\
0 & -x_2 & 0 & x_0 \\
0 & x_1 & -x_0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix} & + t \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & q_0 & q_1 \\
0 & y_0 y_1 y_2 & 0 \\
0 & z_0 z_1 z_2 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & w x_2 w x_1 \\
0 & -x_2 & 0 & x_0 \\
0 & x_1 & -x_0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix} & + t \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & q_0 q_1 q_2 \\
0 & y_0 y_1 y_2 & 0 \\
0 & z_0 z_1 z_2 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & w x_2 w x_1 \\
0 & -x_2 & 0 & x_0 \\
0 & x_1 & -x_0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix} & + t \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & q_0 q_1 q_2 \\
0 & y_0 y_1 y_2 & 0 \\
0 & z_0 z_1 z_2 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & w x_2 w x_1 \\
0 & -x_2 & 0 & x_0 \\
0 & x_1 & -x_0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix} & + t \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & q_0 q_1 q_2 \\
0 & y_0 y_1 y_2 & 0 \\
0 & z_0 z_1 z_2 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & w x_2 w x_1 \\
0 & -x_2 & 0 & x_0 \\
0 & x_1 & -x_0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix} & + t \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & q_0 q_1 q_2 \\
0 & y_0 y_1 y_2 & 0 \\
0 & z_0 z_1 z_2 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & w x_2 w x_1 \\
0 & -x_2 & 0 & x_0 \\
0 & x_1 & -x_0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix} & + t \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & q_0 q_1 q_2 \\
0 & y_0 y_1 y_2 & 0 \\
0 & z_0 z_1 z_2 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & w x_2 w x_1 \\
0 & -x_2 & 0 & x_0 \\
0 & x_1 & -x_0 & 0 \\
1 & 0 & 0 & 0 \\
\end{pmatrix} & + t \\
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & q_0 q_1 q_2 \\
0 & y_0 y_1 y_2 & 0 \\
0 & z_0 z_1 z_2 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\end{align*}

which concludes the proof.

Evaluating (14) at $t = 0$ gives

$$
\begin{pmatrix}
\tilde{x}_0 & x_1 y_0 + x_2 z_0 & x_1 y_1 + x_2 z_1 & x_1 y_2 + x_2 z_2 \\
w & q_0 & q_1 & q_2 \\
0 & -x_2 & 0 & \tilde{x}_0 \\
0 & x_1 & -\tilde{x}_0 & 0 \\
0 & 0 & x_2 & -x_1 \\
\end{pmatrix} + t \cdot
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

(15)

Lemma 4.3. The isomorphism class of the cokernel \mathcal{F} of

\begin{align*}
2\mathcal{O}_P(-3) & \oplus 3\mathcal{O}_P(-2) \to \mathcal{O}_P(-2) \oplus 3\mathcal{O}_P(-1) \\
\begin{pmatrix}
\tilde{x}_0 & p_0 & p_1 & p_2 \\
w & q_0 & q_1 & q_2 \\
0 & -x_2 & 0 & \tilde{x}_0 \\
0 & x_1 & -\tilde{x}_0 & 0 \\
0 & 0 & x_2 & -x_1 \\
\end{pmatrix} & + t \cdot
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\end{align*}

is a sheaf from M_1 with resolution

$$
0 \to 2\mathcal{O}_P(-3) \to \mathcal{O}_P(-2) \oplus \mathcal{O}_P \to \mathcal{F} \to 0,
$$

if $\tilde{x}_0 h - wg \neq 0$ for $g = \tilde{x}_0 p_0 + x_1 p_1 + x_2 p_2$, $h = \tilde{x}_0 q_0 + x_1 q_1 + x_2 q_2$.

Unauthenticated
Proof. Consider the isomorphism class of \mathcal{F} with resolution (15). Then, using the Koszul resolution of $\mathcal{O}_{\mathbb{P}_2}$, one concludes that the kernel of the composition of two surjective morphisms

$$\mathcal{O}_{\mathbb{P}_2}(-2) \oplus 3\mathcal{O}_{\mathbb{P}_2}(-1) \to \mathcal{O}_{\mathbb{P}_2} \to \mathcal{F}$$

coincides with the image of

$$2\mathcal{O}_{\mathbb{P}_2}(-3) \oplus 3\mathcal{O}_{\mathbb{P}_2}(-2) \to \mathcal{O}_{\mathbb{P}_2} \to \mathcal{O}_{\mathbb{P}_2}(-3) \oplus 3\mathcal{O}_{\mathbb{P}_2}(-1),$$

which concludes the proof. ☐

For $A + tB$ with A and B as in (12) we obtain the morphism

$$2\mathcal{O}_{\mathbb{P}_2}(-3) \oplus 3\mathcal{O}_{\mathbb{P}_2}(-2) \to \mathcal{O}_{\mathbb{P}_2} \to 3\mathcal{O}_{\mathbb{P}_2}(-1),$$

given by the matrix

$$\begin{pmatrix}	x_0 & 0 & cx_1x_2 + bx_2^2 & dx_2^2 \\
w & q_0 & q_1 & q_2 \\
0 & -x_1 & tcx_1 & x_0 \\
0 & x_1 & tcx_1 & x_0 \\
t & 0 & x_2 & -x_1
\end{pmatrix},$$

which defines by Lemma 4.3 a family of $(4m - 1)$-sheaves on $\mathbb{B}(t)$ and therefore a morphism $\mathbb{B}(t) \to M$. This morphism sends the point of the exceptional divisor represented by (A, B) to the point given by the quartic curve $C = Z(f)$,

$$f = \tilde{x}_0 \cdot (\tilde{x}_0 q_0(x_0, x_1, x_2) + x_1 q_1(x_1, x_2) + x_2 q_2(x_2))$$

$$-w \cdot (ca x_1^2 x_2 + bx x_2^2 + dx_2^2),$$

and the point $p = Z(\tilde{x}_0, w)$ on C.

4.3.2 Gluing the morphisms $\mathbb{B}(t) \to M$

For different charts $\mathbb{B}(t)$ and $\mathbb{B}(t')$ the corresponding morphisms agree on intersections. Therefore, we conclude that there exists a morphism $\mathbb{B} \to M$. It is an isomorphism outside of D. As already mentioned in Lemma 4.1, the restriction of this morphism to D gives a \mathbb{P}_1-bundle $D \to M_1$.

Lemma 4.4. The map $\mathbb{B} \to M$ is the blow-up $\text{Bl}_{M_1} M \to M$.

Proof. By the universal property of blow-ups, there exists a unique morphism $\mathbb{B} \to \text{Bl}_{M_1} M$ over M, which maps D to the exceptional divisor E of $\text{Bl}_{M_1} M$ and is an isomorphism outside of D. This morphism must be surjective as its image is irreducible and contains an open set. Its fibres must be connected by the Zariski’s main theorem. Restricted to D we get a surjective morphism $D \to E$ of \mathbb{P}_1-bundles over M_1. Over every point of M_1 we have a surjective morphism $\mathbb{P}_1 \to \mathbb{P}_1$ with connected fibres. The only connected subvarieties of \mathbb{P}_1 are the subvarieties consisting of one point and \mathbb{P}_1 itself. The latter cannot be a fibre, since this would contradict the surjectivity. This implies that the map $D \to E$ is a bijection. Therefore, ϕ is a bijective morphism and thus an isomorphism.

This concludes the proof of Theorem 3.1.
References

