Open Mathematics

Research Article

Chao Ma and Jin Zhong*

Rank relations between a \{0, 1\}-matrix and its complement

https://doi.org/10.1515/math-2018-0020
Received September 4, 2017; accepted December 31, 2017.

Abstract: Let \(A \) be a \{0, 1\}-matrix and \(r(A) \) denotes its rank. The complement matrix of \(A \) is defined and denoted by \(A^c = J - A \), where \(J \) is the matrix with each entry being 1. In particular, when \(A \) is a square \{0, 1\}-matrix with each diagonal entry being 0, another kind of complement matrix of \(A \) is defined and denoted by \(\overline{A} = J - I - A \), where \(I \) is the identity matrix. We determine the possible values of \(r(A) \pm r(A^c) \) and \(r(A) \pm r(\overline{A}) \) in the general case and in the symmetric case. Our proof is constructive.

Keywords: \{0, 1\}-matrix, Complement matrix, Rank

MSC: 15A03, 15B36, 05B20, 05C50

1 Introduction

A \{0, 1\}-matrix is an integer matrix with each entry being 0 or 1. \{0, 1\}-matrices are closely related to graph theory and combinatorial mathematics [1-4]. They also have a wide range of practical applications in statistics and probability [5-8].

Denote by \(M_{m,n}(0, 1) \) the set of \(m \times n \) \{0, 1\}-matrices, and we abbreviate \(M_{n,n}(0, 1) \) as \(M_n(0, 1) \). Let \(A \in M_{m,n}(0, 1) \). Then the matrix \(A^c = J_{m,n} - A \) is called the complement of \(A \), where \(J_{m,n} \) is the \(m \times n \) matrix with each entry being 1. It is clear that \(A \) and \(A^c \) are mutually complementary, i.e., \((A^c)^c = A \).

Recall that the adjacency matrix of a digraph \(D \) is the square matrix \(A = (a_{ij}) \), where \(a_{ij} \) is the number of arcs \((i, j) \) in \(D \). A digraph is called strict if it has no loops or parallel arcs. Thus the adjacency matrix of a strict digraph is a \{0, 1\}-matrix with each diagonal entry being 0. The complement of a strict digraph \(D \), denoted by \(\overline{D} \), is also a strict digraph on the same vertices such that \((i, j) \) is an arc in \(\overline{D} \) if and only if \((i, j) \) is not an arc in \(D \). Let \(A \) be the \(n \times n \) adjacency matrix of a strict digraph \(D \). Then the adjacency matrix of \(\overline{D} \) is \(J_n - I_n - A \), where \(J_n = J_{n,n} \) and \(I_n \) is the identity matrix of order \(n \). Denote by \(\Omega_n(0, 1) \) the set of \(n \times n \) \{0, 1\}-matrices with each diagonal entry being 0. Thus for \(A \in \Omega_n(0, 1) \), we define another kind of complement matrix of \(A \) to be \(\overline{A} = J_n - I_n - A \). It is also clear that \(A \) and \(\overline{A} \) are mutually complementary, i.e., \(\overline{(\overline{A})} = A \).

In this paper, we mainly investigate the rank relations between a \{0, 1\}-matrix and its complement. Denote by \(r(A) \) the rank of a matrix \(A \). In Section 2, we determine the possible values of \(r(A) \pm r(A^c) \) for \(A \in M_{m,n}(0, 1) \) in the general case and in the symmetric case. In Section 3, we determine the possible values of \(r(A) \pm r(\overline{A}) \) for \(A \in \Omega_n(0, 1) \) in the general case and in the symmetric case.

We use \(O_{m,n} \) to denote the \(m \times n \) zero matrix. \(O_{n,n} \) will be abbreviated as \(O_n \). Denote by \(E_{ij} \) the matrix with its entry in the \(i \)-th row and \(j \)-th column being 1 and with all other entries being 0.
2 Rank relations between A and A^c

First we determine the possible values of $r(A) \pm r(A^c)$ in the general case.

Theorem 2.1. Let $m, n \geq 2$ be positive integers. Then there exists $A \in M_{m,n}\{0, 1\}$ with $r(A) - r(A^c) = k$ if and only if $-1 \leq k \leq 1$.

Proof. Since $r(A^c) = r(I_{m,n} - A) \leq r(I_{m,n}) + r(A) = 1 + r(A)$. Let $A^c = A + r(A)$ and $A^c = A + r(A)$. Likewise, $r(A) - r(A^c) \leq 1$. This proves the necessity.

For the sufficiency, note that $r(A) - r(A^c) = \pm 1$ if $A = O_{m,n}$ or $I_{m,n}$, and $r(A) = r(A^c)$ if $A = \begin{bmatrix} I_{m,n} & O_{m,n-1} \end{bmatrix}$. This completes the proof.

Theorem 2.2. Let $m, n \geq 2$ be positive integers. Then there exists $A \in M_{m,n}\{0, 1\}$ with $r(A) + r(A^c) = k$ if and only if $1 \leq k \leq 2 \min\{m, n\}$.

Proof. The necessity is clear. Now we prove the sufficiency.

Suppose $m \leq n$. Let $A_1 = \begin{bmatrix} I_p & O_{p,n-p} \\ O_{m-p,p} & O_{m-p,n-p} \end{bmatrix} \in M_{m,n}\{0, 1\}$ with $0 \leq p \leq m - 1$. Clearly $r(A_1) = p$. It is easy to verify that $A_1^c = \begin{bmatrix} I_p - I_p & I_p \\ O_{m-p,p} & O_{m-p,n-p} \end{bmatrix}$ has rank $p + 1$. Then $r(A_1) + r(A_1^c) = 2p + 1$, $0 \leq p \leq m - 1$. Thus for every odd k with $1 \leq k \leq 2m - 1$, there exists $A \in M_{m,n}\{0, 1\}$ such that $r(A) + r(A^c) = k$.

Let $A_2 = \begin{bmatrix} I_q & O_{q,m-q} \\ O_{m-q,p} & O_{m-q,n-m} \end{bmatrix} \in M_{m,n}\{0, 1\}$ with $1 \leq q \leq m - 1$. Clearly $r(A_2) = q + 1$. It is easy to verify that $A_2^c = \begin{bmatrix} I_q - I_q & I_q \\ O_{m-q,p} & O_{m-q,n-m} \end{bmatrix}$ has rank $q + 1$. Then $r(A_2) + r(A_2^c) = 2q + 1$, $1 \leq q \leq m - 1$. Thus for every even k with $4 \leq k \leq 2m$, there exists $A \in M_{m,n}\{0, 1\}$ such that $r(A) + r(A^c) = k$.

Let $A_3 = \begin{bmatrix} J_{m,1} & O_{m,n-1} \end{bmatrix} \in M_{m,n}\{0, 1\}$. Then $r(A_3) + r(A_3^c) = 1 + 1 = 2$.

Thus for every integer k with $1 \leq k \leq 2m$, there exists $A \in M_{m,n}\{0, 1\}$ such that $r(A) + r(A^c) = k$.

If $m > n$, the argument is similar. This completes the proof.

Next we consider the case when $A \in M_{n}\{0, 1\}$ is symmetric.

Theorem 2.3. Let $n \geq 2$ be a positive integer. Then there exists symmetric $A \in M_{n}\{0, 1\}$ with $r(A) - r(A^c) = k$ if and only if $-1 \leq k \leq 1$.

Proof. For the necessity, the argument is the same as that of Theorem 2.1.

For the sufficiency, note that $r(A) - r(A^c) = -1, 0, 1$ if $A = O_n, I_n, J_n$, respectively.

Lemma 2.4. Let $A \in M_{n}\{0, 1\}$ be symmetric. Then $r(A) + r(A^c) \neq 2$.

Proof. Assume that there exists symmetric $A \in M_{n}\{0, 1\}$ such that $r(A) + r(A^c) = 2$. If $r(A) = 0$, then $A = O_n$ and thus $A^c = J_n$, which contradicts the assumption that $r(A) + r(A^c) = 2$. If $r(A) = 2$, then $A^c = 0$. This implies $A = I_n$ and thus $r(A) = 1$, a contradiction. If $r(A) = 1$, by the proof of Theorem 4(i) in [9], it follows that A is permutation similar to $\begin{bmatrix} I_p & O_{p,n-p} \\ O_{n-p,p} & O_{n-p} \end{bmatrix}$ with $1 \leq p \leq n$. Thus A^c is permutation similar to $\begin{bmatrix} O_{p} & I_{p,n-p} \\ J_{n-p} \end{bmatrix}$, which implies that $r(A^c) = 0$ when $p = n$ and $r(A^c) = 2$ when $1 \leq p \leq n - 1$. Then $r(A) + r(A^c) = 1$ or 3, a contradiction. Thus $r(A) + r(A^c) \neq 2$ for any symmetric $A \in M_n\{0, 1\}$.

Note that the matrices $A_1, A_2 \in M_{m,n}\{0, 1\}$ in the proof of Theorem 2.2 are symmetric when $m = n$. By Theorem 2.2 and Lemma 2.4, we have the following result.
Theorem 2.5. Let \(n \geq 2 \) be a positive integer. Then there exists symmetric \(A \in M_n(0, 1) \) with \(r(A) + r(A^c) = k \) if and only if \(1 \leq k \leq 2n \) with \(k \neq 2 \).

3 Rank relations between \(A \) and \(\overline{A} \)

In this section, we only consider \(A \in \Omega_n(0, 1) \) which corresponds to the adjacency matrix of a strict digraph. Recall that for an \(n \times n \) matrix \(A = (a_{ij}) \), the main diagonal of \(A \) is the list of entries \(a_{11}, a_{22}, \ldots, a_{nn} \), and the secondary diagonal of \(A \) is the list of entries \(a_{1n}, a_{2,n-1}, \ldots, a_{n1} \). Let \(C_1 \) be the square matrix whose entries above the main diagonal are all 1’s, while other entries are all 0’s. The size of \(C_1 \) will be clear from the context.

First we determine the possible values of \(r(A) \pm r(\overline{A}) \) in the general case.

Theorem 3.1. Let \(n \geq 2 \) be a positive integer. Then there exists \(A \in \Omega_n(0, 1) \) with \(r(A) - r(\overline{A}) = k \) if and only if

(i) \(k = 0, \pm 2 \) when \(n = 2 \);

(ii) \(-n \leq k \leq n \) when \(n \geq 3 \).

Proof. (i) The case \(n = 2 \) is trivial.

(ii) The necessity is clear. Now we prove the sufficiency.

Let \(B_1 = \begin{bmatrix} C_1 & I_{n-n-p} \\ O_{n-p,n} & O_{n-p} \end{bmatrix} \in \Omega_n(0, 1) \), where \(1 \leq p \leq n - 1 \). It is easy to verify that \(r(B_1) = p, \ r(\overline{B_1}) = n - 1 \). Thus for every integer \(k \) with \(-n + 2 \leq k \leq n - 2 \), there exists \(A \in \Omega_n(0, 1) \) such that \(r(A) - r(\overline{A}) = k \).

Let \(B_2 = \begin{bmatrix} C_2 \\ O_{n-1,n} \end{bmatrix} \in \Omega_n(0, 1) \), where \(C_2 = [0, 1, \ldots, 1, 0] \). Then \(r(B_2) = 1, \ r(\overline{B_2}) = n \). Note that \(r(O_n) = 0, \ r(\overline{O_n}) = n \). Thus for \(k = z(n - 1), zn \), there exists \(A \in \Omega_n(0, 1) \) such that \(r(A) - r(\overline{A}) = k \). This proves the sufficiency. \(\square \)

Theorem 3.2. Let \(n \geq 2 \) be a positive integer. Then there exists \(A \in \Omega_n(0, 1) \) with \(r(A) + r(\overline{A}) = k \) if and only if

(i) \(k = 2 \) when \(n = 2 \);

(ii) \(n \leq k \leq 2n \) when \(n \geq 3 \).

Proof. (i) Trivial.

(ii) \(r(A) + r(\overline{A}) \leq 2n \) is clear. Since \(A + \overline{A} = I_n - I_n, \ n = r(A + \overline{A}) \leq r(A) + r(\overline{A}) \). This proves the necessity.

For the sufficiency, first note that the matrix \(B_1 \in \Omega_n(0, 1) \) in the proof of Theorem 3.1(ii) implies that for every integer \(k \) with \(n \leq k \leq 2n - 2 \), there exists \(A \in \Omega_n(0, 1) \) such that \(r(A) + r(\overline{A}) = k \).

Let \(B_3 = C_1 - E_{1n} \in \Omega_n(0, 1) \). Then \(r(B_3) = n - 1, \ r(\overline{B_3}) = n \).

Let \(B_4 = B_3 + E_{1n} \in \Omega_n(0, 1) \). Then \(r(B_4) = r(\overline{B_4}) = n \).

Thus for \(k = 2n - 1, 2n \), there exists \(A \in \Omega_n(0, 1) \) such that \(r(A) + r(\overline{A}) = k \). This proves the sufficiency. \(\square \)

Next we consider the case when \(A \in \Omega_n(0, 1) \) is symmetric.

Lemma 3.3. Let \(G = \begin{bmatrix} G_1 & I_{p,n-p} \\ J_{n-p,n} & J_{n-p} - I_{n-p} \end{bmatrix} \in \Omega_n(0, 1) \) with \(1 \leq p \leq n - 1 \), where \(G_1 \) is the \(p \times p \) matrix whose entries on the main diagonal, on the secondary diagonal and above the secondary diagonal are all 0’s, while other entries are all 1’s. Then \(r(G) = n \) if \(p \) is odd, and \(r(G) = n - 1 \) if \(p \) is even.

Proof. First consider the case when \(p \) is odd. If \(p = n - 1 \), then \(n = p + 1 \) is even and it is clear that \(\det G \neq 0 \).

If \(p < n - 1 \), for \(i = p + 1, p + 2, \ldots, n - 1 \), subtract the last row of \(G \) from the \(i \)-th row, and then add the \(i \)-th column to the last column. Using Laplace expansion formula, we deduce that \(\det G \neq 0 \).

When \(p \) is even, the \(\frac{p}{2} \)-th row (column) of \(G \) is identical to the \((\frac{p}{2} + 1) \)-th row (column). Denote by \(G_2 \) the submatrix of \(G \) obtained by deleting the \(\frac{p}{2} \)-th row and the \(\frac{p}{2} \)-th column. Note that \(G_2 = \)
\[
\begin{bmatrix}
G_3 \\
J_{p-1,n-p}
\end{bmatrix}
\end{bmatrix}
\in \Omega_{n-1}(0, 1),
\text{where } G_3 \text{ is the } (p - 1) \times (p - 1) \text{ matrix which has the same form as } G_1.
\text{Since } p - 1 \text{ is odd, } r(G) = r(G_3) = n - 1 \text{ by what we have just proved.}
\]

Lemma 3.4. Let \(H \in \Omega_n(0, 1) \) be the matrix whose entries on the main diagonal, on the diagonal above and the diagonal below are all 0's, while other entries are all 1's. Then

(i) \(r(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}}) = n \) for odd \(n \geq 5 \), \(r(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{n, \frac{2n}{3}}) = n \) for odd \(n \geq 7 \), \(r(H - E_{1, \frac{n}{2}} - E_{2, \frac{n}{2}} + E_{\frac{3n}{4}, \frac{n}{2}} + E_{n, \frac{2n}{3}}) = n \) for odd \(n \geq 7 \);

(ii) \(r(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}}) = n \) for even \(n \geq 4 \), \(r(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{\frac{3n}{4}, \frac{n}{2}} - E_{n, \frac{2n}{3}}) = n - 1 \) for even \(n \geq 6 \).

Proof. (i) When \(n \geq 5 \) is odd, \(\frac{n+1}{2} > 1 \). Then \(E_{1, \frac{n}{2}} \neq E_{n, \frac{2n}{3}} \). Using Laplace expansion formula, it is easy to verify that \(\det(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}}) \neq 0 \) for odd \(n \geq 5 \) and \(\det(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{n, \frac{2n}{3}}) \neq 0 \) for odd \(n \geq 7 \).

When \(n \geq 7 \) is odd, subtract the second row of \(H - E_{1, \frac{n}{2}} - E_{2, \frac{n}{2}} + E_{\frac{3n}{4}, \frac{n}{2}} + E_{n, \frac{2n}{3}} \) from the first row, and then subtract the second column from the first column. Using Laplace expansion formula, we deduce that \(\det(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}}) \neq 0 \) for even \(n \geq 4 \).

(ii) When \(n \geq 4 \) is even, \(\frac{n}{2} > 1 \). Then \(E_{1, \frac{n}{2}} \neq E_{\frac{n}{2}, \frac{n}{2}} \). Using Laplace expansion formula, it is easy to verify that \(\det(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{n, \frac{2n}{3}} - E_{n, \frac{2n}{3}}) \neq 0 \).

When \(n \geq 6 \) is even, \(\frac{n}{2} - 1 > 1 \). Note that the \((\frac{n}{2} + 2) \)-th row (column) of \(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{n, \frac{2n}{3}} + E_{\frac{3n}{4}, \frac{n}{2}} - E_{n, \frac{2n}{3}} \) is the sum of the first row (column) and the \((\frac{n}{2} - 1) \)-th row (column). Then \(\det(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{n, \frac{2n}{3}} + E_{\frac{3n}{4}, \frac{n}{2}}) = n - 1 \). Using Laplace expansion formula and the fact that \(J_0 - I_1 \) is nonsingular, we can deduce that the submatrix of \(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{n, \frac{2n}{3}} + E_{\frac{3n}{4}, \frac{n}{2}} \) obtained by deleting the \((\frac{n}{2} + 2) \)-th row and the \((\frac{n}{2} + 1) \)-th column is nonsingular. Thus \(\det(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}} - E_{n, \frac{2n}{3}} + E_{\frac{3n}{4}, \frac{n}{2}}) = n - 1 \).

Finally we determine the possible values of \(r(A) \pm r(\overline{A}) \) in the symmetric case.

Theorem 3.5. Let \(n \geq 2 \) be a positive integer. Then there exists symmetric \(A \in \Omega_n(0, 1) \) with \(r(A) - r(\overline{A}) = k \) if and only if

(i) \(k = \pm 2 \) when \(n = 2 \);
(ii) \(k = 0, \pm 3 \) when \(n = 3 \);
(iii) \(-n \leq k \leq n \) with \(k \neq \pm (n - 1) \) when \(n \geq 4 \).

Proof. (i) and (ii) are easy to verify.

(iii) First we prove the necessity. It is clear that \(-n \leq r(A) - r(\overline{A}) \leq n \). If \(r(A) - r(\overline{A}) = -(n - 1) \), then either \(r(A) = 0 \) and \(r(\overline{A}) = n - 1 \), or \(r(A) = 1 \) and \(r(\overline{A}) = n \). For the former case, \(A = O_n \) and \(\overline{A} = J_n - I_n \) is nonsingular, a contradiction. For the latter case, note that any nonzero symmetric \(A \in \Omega_n(0, 1) \) always has a \(2 \times 2 \) submatrix

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]

Then \(r(A) \geq 2 \), a contradiction. Thus \(r(A) - r(\overline{A}) \neq -(n - 1) \). Likewise, \(r(A) - r(\overline{A}) \neq n - 1 \).

Next we prove the sufficiency. We will use the symmetric matrices \(\Omega_1 = \Omega_{p}(0, 1) \) and \(\Omega_2, H \in \Omega_3(0, 1) \) in Lemmas 3.3 and 3.4.

Note that \(r(\overline{G}) = r(G) \), \(p - 1 \) if \(p \) is odd, and \(r(G) = r(G_1) = p \) if \(p \geq 2 \) is even. Then by Lemma 3.3, \(r(G) - r(\overline{G}) = n - 1 \) for odd \(p \), and \(r(G) - r(\overline{G}) = n - p \) for even \(p \). When \(n \geq 5 \) is odd, for odd \(p \) with \(1 \leq p \leq n - 2 \), \(r(G) - r(\overline{G}) = 3, 5, 7, \ldots, n - 2, n \); for even \(p \) with \(2 \leq p \leq n - 1 \), \(r(G) - r(\overline{G}) = 0, 2, 4, \ldots, n - 5, n - 3 \). Thus \(k \leq 0, \pm 2, \pm 3, \ldots, \pm (n - 2), \pm n \) for odd \(n \geq 5 \). When \(n \geq 4 \) is even, for odd \(p \) with \(1 \leq p \leq n - 1 \), \(r(G) - r(\overline{G}) = 2, 4, 6, \ldots, n - 2, n \); for even \(p \) with \(2 \leq p \leq n - 2 \), \(r(G) - r(\overline{G}) = 1, 3, 5, \ldots, n - 5, n - 3 \). Thus \(k \leq \pm 1, \pm 2, \ldots, \pm (n - 2), \pm n \) for even \(n \geq 4 \).

By Lemma 3.4(i), for odd \(n \geq 5 \), \(r(H - E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}}) = n \). Since \(r(H + E_{1, \frac{n}{2}} - E_{\frac{3n}{4}, \frac{n}{2}}) = r(H - E_{1, \frac{n}{2}} - E_{\frac{3n}{4}, \frac{n}{2}}) = n - 1 \), \(n \) is odd, and \(r(H + E_{1, \frac{n}{2}} - E_{\frac{3n}{4}, \frac{n}{2}} - E_{n, \frac{2n}{3}}) = 1 \). Thus \(k \) can be \(\pm 1 \) for odd \(n \geq 5 \). By Lemma 3.4(ii), for even \(n \geq 4 \), \(r(H + E_{1, \frac{n}{2}} + E_{2, \frac{n}{2}}) = n \). Since \(r(H - E_{1, \frac{n}{2}} - E_{2, \frac{n}{2}}) = r(H - E_{1, \frac{n}{2}} - E_{\frac{3n}{4}, \frac{n}{2}}) = n \) when \(n \) is even, \(k \) can be \(0 \) for even \(n \geq 4 \).
Thus for \(k = 0, \pm 1, \pm 2, \ldots, \pm (n - 2), \pm n \) with \(n \geq 4 \), there exists symmetric \(A \in \Omega_n \) such that \(r(A) - r(\overline{A}) = k \). This completes the proof. \(\square \)

Theorem 3.6. Let \(n \geq 2 \) be a positive integer. Then there exists symmetric \(A \in \Omega_n \) with \(r(A) + r(\overline{A}) = k \) if and only if

(i) \(k = \pm 2 \) when \(n = 2 \);
(ii) \(k = 3, 4 \) when \(n = 3 \);
(iii) \(k = 4, 5, 6, 8 \) when \(n = 4 \);
(iv) \(n \leq k \leq 2n \) when \(n \geq 5 \).

Proof. (i) and (ii) are easy to verify.

(iii) Denote by \(f(A) \) the number of 1’s in \(A \). Then for symmetric \(A \in \Omega_n \), \(f(A) \) and \(f(\overline{A}) \) are even with \(f(A) + f(\overline{A}) = 12 \). Since \(A \) and \(\overline{A} \) are mutually complementary, we may suppose \(f(A) \leq 6 \).

If \(f(A) = 0 \), then \(A = O_4 \) and thus \(r(A) + r(\overline{A}) = 0 + 4 = 4 \).

If \(f(A) = 2 \), under permutation similarity, it suffices to consider the case \(A = E_{12} + E_{21} \). A direct computation shows that \(r(A) + r(\overline{A}) = 2 + 3 = 5 \).

If \(f(A) = 4 \), under permutation similarity, it suffices to consider the cases \(A = E_{12} + E_{21} + E_{13} + E_{31} \) and \(A = E_{12} + E_{21} + E_{32} + E_{43} \). A direct computation shows that \(r(A) + r(\overline{A}) = 2 + 4 = 6 \) in the first case and \(r(A) + r(\overline{A}) = 4 + 2 = 6 \) in the second case.

If \(f(A) = 6 \), under permutation similarity, it suffices to consider the cases \(A = E_{12} + E_{21} + E_{13} + E_{13} + E_{23} + E_{32} \), \(A = E_{12} + E_{21} + E_{31} + E_{41} \) and \(A = E_{12} + E_{21} + E_{13} + E_{24} + E_{42} \). A direct computation shows that \(r(A) + r(\overline{A}) = 3 + 2 = 5 \) in the first case, \(r(A) + r(\overline{A}) = 2 + 3 = 5 \) in the second case and \(r(A) + r(\overline{A}) = 4 + 4 = 8 \) in the third case.

Therefore, \(r(A) + r(\overline{A}) \) can only be 4, 5, 6, 8 for symmetric \(A \in \Omega_4 \).

(iv) The necessity has been proved in Theorem 3.2(ii). Now we prove the sufficiency.

By Lemma 3.3 and the proof of Theorem 3.5 (iii), \(k \) can be \(n - 1 + p \) for \(1 \leq p \leq n - 1 \).

By Lemma 3.4 (i), for odd \(n \geq 5 \), \(r(H + E_{1,2} + E_{2,3} + E_{3,4} + E_{4,1}) + r(H - E_{1,2} - E_{2,3} - E_{3,4} - E_{4,1}) = n + (n - 1) = 2n - 1 \). By Lemma 3.4 (ii), for even \(n \geq 6 \), \(r(H + E_{1,2} + E_{2,3} + E_{3,4} + E_{4,1} + E_{5,1} + E_{5,2} + E_{5,3} + E_{5,4} + E_{5,5} + E_{6,1} + E_{6,2} + E_{6,3} + E_{6,4} + E_{6,5} + E_{6,6}) = (n - 1) + n = 2n - 1 \). Thus \(k \) can be \(2n - 1 \) when \(n \geq 5 \).

By Lemma 3.4 (i), for odd \(n \geq 7 \), \(r(H + E_{1,2} + E_{2,3} + E_{3,4} + E_{4,1} + E_{5,1} + E_{5,2} + E_{5,3} + E_{5,4} + E_{5,5} + E_{6,1} + E_{6,2} + E_{6,3} + E_{6,4} + E_{6,5} + E_{6,6}) = n + n = 2n \). By Lemma 3.4 (ii), for even \(n \geq 4 \), \(r(H + E_{1,2} + E_{2,3} + E_{3,4} + E_{4,1} + E_{5,1} + E_{5,2} + E_{5,3} + E_{5,4} + E_{5,5} + E_{6,1} + E_{6,2} + E_{6,3} + E_{6,4} + E_{6,5} + E_{6,6}) = (n - 1) + (n - 1) = 2n - 2 \). Note that

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 0 & 1 & 0
0 & 0 & 1 & 0 & 1 & 0 & 1
1 & 0 & 0 & 0 & 0 & 1 & 1
0 & 1 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
+ \begin{pmatrix}
0 & 1 & 0 & 1 & 0 & 0 & 1
0 & 0 & 1 & 0 & 1 & 0 & 1
1 & 1 & 0 & 0 & 0 & 1 & 1
1 & 1 & 0 & 0 & 0 & 1 & 1
\end{pmatrix} = 5 + 5 = 10.
\]

Thus \(k \) can be \(2n \) when \(n \geq 4 \).

Then for symmetric \(A \in \Omega_n \) with \(n \geq 5 \), \(r(A) + r(\overline{A}) \) can be \(n, n + 1, \ldots, 2n \). \(\square \)

4 Conclusion

This paper considers two kinds of complement matrices \(A^c \) and \(\overline{A} \) of a \(\{0, 1\} \)-matrix \(A \). If \(A \) is a square \(\{0, 1\} \)-matrix with each diagonal entry being 0, then \(A \) and its complement \(\overline{A} \) correspond to a strict digraph \(D \) and its complement \(\overline{D} \). We mainly discuss their rank relations. As is shown in the proof, we construct a \(\{0, 1\} \)-matrix \(A \) for each possible value of \(r(A) \) in both general and symmetric cases.

Acknowledgement: The authors are grateful to the anonymous referees for their valuable comments and suggestions, which helped improve the original manuscript of this paper. This research was supported by the Na-
Rank relations between a $\{0, 1\}$-matrix and its complement

ational Natural Science Foundation of China (Grant Nos. 11601322, 11661041, 61573240, 11661040), the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology (JXUSTQJYX2017007).

References