Open Mathematics
Research Article

Alexander V. Osipov*
On the different kinds of separability of the space of Borel functions

https://doi.org/10.1515/math-2018-0070
Received June 18, 2017; accepted May 24, 2018.
Abstract: In paper we prove that:
- a space of Borel functions $B(X)$ on a set of reals X, with pointwise topology, to be countably selective sequentially separable if and only if X has the property $S_1(B_Γ, B_Γ)$;
- there exists a consistent example of sequentially separable selectively separable space which is not selective sequentially separable. This is an answer to the question of A. Bella, M. Bonanzinga and M. Matveev;
- there is a consistent example of a compact T_2 sequentially separable space which is not selective sequentially separable. This is an answer to the question of A. Bella and C. Costantini;
- $\min\{b, q\} = \{κ : 2^κ \text{ is not selective sequentially separable}\}$. This is a partial answer to the question of A. Bella, M. Bonanzinga and M. Matveev.

Keywords: $S_1(D, D)$, $S_1(S, S)$, $S_{fin}(S, S)$, Function spaces, Selection principles, Borel function, $σ$-set, $S_1(B_Ω, B_Ω)$, $S_1(B_Γ, B_Γ)$, $S_1(B_Ω, B_Γ)$, Sequentially separable, Selectively separable, Selective sequentially separable, Countably selective sequentially separable

MSC: 54C35, 54C05, 54C65, 54A20

1 Introduction

In [12], Osipov and Pytkeev gave necessary and sufficient conditions for the space $B_1(X)$ of the Baire class 1 functions on a Tychonoff space X, with pointwise topology, to be (strongly) sequentially separable. In this paper, we consider some properties of a space $B(X)$ of Borel functions on a set of reals X, with pointwise topology, that are stronger than (sequential) separability.

2 Main definitions and notation

Many topological properties are defined or characterized in terms of the following classical selection principles. Let A and B be sets consisting of families of subsets of an infinite set X. Then:

$S_1(A, B)$ is the selection hypothesis: for each sequence $(A_n : n ∈ N)$ of elements of A there is a sequence $(b_n : n ∈ N)$ such that for each n, $b_n ∈ A_n$, and $(b_n : n ∈ N)$ is an element of B.

$S_{fin}(A, B)$ is the selection hypothesis: for each sequence $(A_n : n ∈ N)$ of elements of A there is a sequence $(B_n : n ∈ N)$ of finite sets such that for each n, $B_n ⊆ A_n$, and $\bigcup_{n ∈ N} B_n ∈ B$.

*Corresponding Author: Alexander V. Osipov: Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, 620219, Yekaterinburg, Russia, E-mail: OAB@list.ru

Open Access. © 2018 Osipov, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.
$U_{fin}(A, B)$ is the selection hypothesis: whenever $U_1, U_2, \ldots \in A$ and none contains a finite subcover, there are finite sets $F_n \subseteq U_n, n \in \mathbb{N}$, such that $\{\bigcup F_n : n \in \mathbb{N}\} \in B$.

An open cover \mathcal{U} of a space X is:
- an ω-cover if X does not belong to \mathcal{U} and every finite subset of X is contained in a member of \mathcal{U};
- a γ-cover if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U}.

For a topological space X we denote:
- Ω — the family of all countable open ω-covers of X;
- Γ — the family of all countable open γ-covers of X;
- B_ω — the family of all countable Borel ω-covers of X;
- B_γ — the family of all countable Borel γ-covers of X;
- F_Γ — the family of all countable closed γ-covers of X;
- D — the family of all countable dense subsets of X;
- S — the family of all countable sequentially dense subsets of X.

A γ-cover \mathcal{U} of co-zero sets of X is γ_F-shrinkable if there exists a γ-cover $\{F(U) : U \in \mathcal{U}\}$ of zero-sets of X with $F(U) \subseteq U$ for every $U \in \mathcal{U}$.

For a topological space X we denote Γ_F, the family of all countable γ_F-shrinkable γ-covers of X.

We will use the following notations.
- $C_p(X)$ is the set of all real-valued continuous functions $C(X)$ defined on a space X, with pointwise topology.
- $B_1(X)$ is the set of all first Baire class functions $B_1(X)$ i.e., pointwise limits of continuous functions, defined on a space X, with pointwise topology.
- $B(X)$ is the set of all Borel functions, defined on a space X, with pointwise topology.

If X is a space and $A \subseteq X$, then the sequential closure of A, denoted by $[A]_\text{seq}$, is the set of all limits of sequences from A. A set $D \subseteq X$ is said to be sequentially dense if $X = [D]_\text{seq}$. If D is a countable, sequentially dense subset of X then X call sequentially separable space.

Call a space X strongly sequentially separable if X is separable and every countable dense subset of X is sequentially dense.

A space X is (countably) selectively separable (or M-separable, [3]) if for every sequence $(D_n : n \in \mathbb{N})$ of (countable) dense subsets of X one can pick finite $F_n \subseteq D_n, n \in \mathbb{N}$, so that $\bigcup\{F_n : n \in \mathbb{N}\}$ is dense in X.

In [3], the authors started to investigate a selective version of sequential separability.

A space X is (countably) selectively sequentially separable (or M-sequentially separable, [3]) if for every sequence $(D_n : n \in \mathbb{N})$ of (countable) sequentially dense subsets of X, one can pick finite $F_n \subseteq D_n, n \in \mathbb{N}$, so that $\bigcup\{F_n : n \in \mathbb{N}\}$ is sequentially dense in X.

In Scheepers’ terminology [16], countably selectively separability equivalently to the selection principle $S_{fin}(D, D)$, and countably selective sequentially separability equivalently to the $S_{fin}(S, S)$.

Recall that the cardinal p is the smallest cardinal so that there is a collection of p many subsets of the natural numbers with the strong finite intersection property but no infinite pseudo-intersection. Note that $\omega \leq p \leq c$.

For $f, g \in \mathbb{N}^\omega$, let $f \preceq g$ if $f(n) \leq g(n)$ for all but finitely many n. b is the minimal cardinality of a \preceq^*-unbounded subset of \mathbb{N}^ω. A set $B \subseteq \mathbb{N}^\omega$ is unbounded if the set of all increasing enumerations of elements of B is unbounded in \mathbb{N}^ω, with respect to \preceq^*. It follows that $|B| \geq b$. A subset S of the real line is called a Q-set if each one of its subsets is a G_δ. The cardinal q is the smallest cardinal so that for any $\kappa < q$ there is a Q-set of size κ. (See [7] for more on small cardinals including p).
3 Properties of a space of Borel functions

Theorem 3.1. For a set of reals X, the following statements are equivalent:
1. $B(X)$ satisfies $S_1(S, S)$ and $B(X)$ is sequentially separable;
2. X satisfies $S_1(B_r, B_r)$;
3. $B(X) \in S_{\text{fin}}(S, S)$ and $B(X)$ is sequentially separable;
4. X satisfies $S_{\text{fin}}(B_r, B_r)$;
5. $B_1(X)$ satisfies $S_1(S, S)$;
6. X satisfies $S_1(F_r, F_r)$;
7. $B_1(X)$ satisfies $S_{\text{fin}}(S, S)$.

Proof. It is obvious that $(1) \Rightarrow (3)$.

$(2) \Rightarrow (4)$. By Theorem 1 in [15], $U_{\text{fin}}(B_r, B_r) = S_1(B_r, B_r) = S_{\text{fin}}(B_r, B_r)$.

$(3) \Rightarrow (2)$. Let $\{\mathcal{F}_i\} \subset B_r$ and $\mathcal{S} = \{h_m\}_{m \in \mathbb{N}}$ be a countable sequentially dense subset of $B(X)$. For each $i \in \mathbb{N}$ we consider a countable sequentially dense subset \mathcal{S}_i of $B(X)$ and $\mathcal{F}_i = \{F_i^n\}_{m \in \mathbb{N}}$ where

$$S_i \equiv \{F_i^n\}_{m \in \mathbb{N}} = \{f_i^n \in B(X) : f_i^n \upharpoonright \mathcal{S} = h_m \text{ and } f_i^n \upharpoonright (X \setminus F_i^n) = 1 \text{ for } m \in \mathbb{N} \}.$$

Since $\mathcal{F}_i = \{F_i^n\}_{m \in \mathbb{N}}$ is a Borel γ-cover of X and \mathcal{S} is a countable sequentially dense subset of $B(X)$, we have that S_i is a countable sequentially dense subset of $B(X)$ for each $i \in \mathbb{N}$. Indeed, let $h \in B(X)$, there is a sequence $\{h_s\}_{s \in \mathbb{N}} \subset \mathcal{S}$ such that $\{h_s\}_{s \in \mathbb{N}}$ converges to h. We claim that $\{f_i^n\}_{s \in \mathbb{N}}$ converges to h. Let $K = \{x_1, \ldots, x_k\}$ be a finite subset of X, $\epsilon > 0$ and let $W = (h, K, \epsilon) = \{ g \in B(X) : |g(x_j) - h(x_j)| < \epsilon \text{ for } j = 1, \ldots, k \}$ be a base neighborhood of h, then there is $m_0 \in \mathbb{N}$ such that $K \subset F_i^{m_0}$ for each $m > m_0$ and $h \in W$ for each $s > m_0$. Since $f_i^n \upharpoonright K = h_s \upharpoonright K$ for every $s > m_0$, $f_i^n \upharpoonright W$ for every $s > m_0$. It follows that $\{f_i^n\}_{s \in \mathbb{N}}$ converges to h.

Since $B(X)$ satisfies $S_{\text{fin}}(S, S)$, there is a sequence $(\mathcal{F}_i = \{F_i^{m_i} : i \in \mathbb{N}\})$ such that for each i, $F_i \subset S_i$, and $\bigcup_{j \in \mathbb{N}} F_i$ is a countable sequentially dense subset of $B(X)$.

For $0 \in B(X)$ there is a sequence $\{f_i^{m_i}(n)\}_{j \in \mathbb{N}} \subset \bigcup_{j \in \mathbb{N}} F_i$ such that $\{f_i^{m_i}(n)\}_{j \in \mathbb{N}}$ converges to 0. Consider a sequence $(F_i^{m_i}(n) : j \in \mathbb{N})$.

(1) $F_i^{m_i}(j) \in \mathcal{F}_i$;

(2) $\{F_i^{m_i}(j) : j \in \mathbb{N}\}$ is a γ-cover of X.

Indeed, let K be a finite subset of X and $U = (0, K, \frac{1}{j})$ be a base neighborhood of 0, then there is $j_0 \in \mathbb{N}$ such that $f_i^{m_i}(j) \in U$ for every $j > j_0$. It follows that $K \subset F_i^{m_i}$ for every $j > j_0$. We thus get that X satisfies $U_{\text{fin}}(B_r, B_r)$, and, hence, by Theorem 1 in [15], X satisfies $S_1(B_r, B_r)$.

$(2) \Rightarrow (1)$. Let $\{S_i\} \subset S$ and $S = \{d_n : n \in \mathbb{N}\} \subset S$. Consider the topology τ generated by the family $\mathcal{P} = \{f_i^{-1}(G) : G \text{ is an open set of } \mathbb{R} \text{ and } f \in S \cup \{S_i\}\}$. Since $P = S \cup \{S_i\}$ is a countable dense subset of $B(X)$ and X is Tychonoff, we have that the space $Y = (X, \tau)$ is a separable metrizable space. Note that a function $f \in P$, considered as mapping from Y to \mathbb{R}, is a continuous function i.e. $f \in C(Y)$ for each $f \in P$. Note also that an identity map φ from X on Y, is a Borel bijection. By Corollary 12 in [6], Y is a QN-space and, hence, by Corollary 20 in [17], Y has the property $S_1(B_r, B_r)$. By Corollary 21 in [17], $B(Y)$ is an α_2 space.

Let $q : \mathbb{N} \to \mathbb{N}$ be a bijection. Then we enumerate $\{S_i\}_{i \in \mathbb{N}}$ as $\{S_{(i)}(j) : j \in \mathbb{N}\}_{i \in \mathbb{N}}$. For each $d_n \in S$ there are sequences $s_{n,m} \subset S_{n,m}$ such that $s_{n,m}$ converges to d_n for each $m \in \mathbb{N}$. Since $B(Y)$ is an α_2 space, there is $\{b_{n,m} : m \in \mathbb{N}\}$ such that for each $m, b_{n,m} \in S_{n,m}$, and, $b_{n,m} \to d_n (m \to \infty)$. Let $B = \{b_{n,m} : n, m \in \mathbb{N}\}$. Note that $S \subset [B]_{\text{seq}}$.

Since X is a σ-set (that is, each Borel subset of X is F_σ)(see [17]), $B_1(X) = B(X)$ and $\varphi(B(Y)) = \varphi(B_1(Y)) \subseteq B(X)$ where $\varphi(B_1) := \{p \circ \varphi : p \in B(Y)\}$ and $\varphi(B_1(Y)) := \{p \circ \varphi : p \in B_1(Y)\}$.

Since S is a countable, sequentially dense subset of $B(X)$, for any $g \in B(X)$ there is a sequence $\{g_n\}_{n \in \mathbb{N}} \subset S$ such that $\{g_n\}_{n \in \mathbb{N}}$ converges to g. But g we can consider as a mapping from Y into \mathbb{R} and a set $\{g_n : n \in \mathbb{N}\}$ as subset of $C(Y)$. It follows that $g \in B_1(Y)$. We get that $\varphi(B(Y)) = B(X)$.

We claim that $B \in S$, i.e. that $B_{\text{seq}} = B(X)$. Let $f \in B(Y)$ and $\{f_k : k \in \mathbb{N}\} \subset S$ such that $f_k \to f (k \to \infty)$. For each $k \in \mathbb{N}$ there is $\{f_k^n : n \in \mathbb{N}\} \subset B$ such that $f_k^n \to f_k (n \to \infty)$. Since Y is a QN-space (Theorem 16 in
[6], there exists an unbounded \(\beta \in \mathbb{N}^\mathbb{N} \) such that \(\{ f_k^{(j)} \} \) converges to \(f \) on \(Y \). It follows that \(\{ f_k^{(j)} : k \in \mathbb{N} \} \) converge to \(f \) on \(X \) and \([B]_{seq} = B(X) \).

\[(5) \Rightarrow (6) \] By Velichko's Theorem ([18]), a space \(B_1(X) \) is sequentially separable for any separable metric space \(X \).

Let \(\{ F_i \} \subset F_T \) and \(S = \{ h_n \}_{n \in \mathbb{N}} \) be a countable sequentially dense subset of \(B_1(X) \).

Similarly implication \((3) \Rightarrow (2) \) we get \(X \) satisfies \(U_{fin}(F_T, F_T) \), and, hence, by Lemma 13 in [17], \(X \) satisfies \(S_1(F_T, F_T) \).

\[(6) \Rightarrow (5) \] By Corollary 20 in [17], \(X \) satisfies \(S_1(B_T, B_T) \). Since \(X \) is a \(\sigma \)-set (see [17]), \(B_1(X) = B(X) \) and, by implication \((2) \Rightarrow (1) \), we get \(B_1(X) \) satisfies \(S_1(S, S) \).

In [16], Theorem 13 M. Scheepers proved the following result.

Theorem 3.2 (Scheepers). For \(X \) a separable metric space, the following are equivalent:

1. \(C_p(X) \) satisfies \(S_1(\mathcal{D}, \mathcal{D}) \);
2. \(X \) satisfies \(S_1(\mathcal{O}, \mathcal{O}) \).

We claim the theorem for a space \(B(X) \) of Borel functions.

Theorem 3.3. For a set of reals \(X \), the following are equivalent:

1. \(B(X) \) satisfies \(S_1(\mathcal{D}, \mathcal{D}) \);
2. \(X \) satisfies \(S_1(\mathcal{B}_T, \mathcal{B}_T) \).

Proof. \((1) \Rightarrow (2) \). Let \(X \) be a set of reals satisfying the hypotheses and \(\beta \) be a countable base of \(X \). Consider a sequence \(\{ B_i \}_{i \in \mathbb{N}} \) of countable Borel \(\omega \)-covers of \(X \) where \(B_i = \{ W^k_j \}_{j \in \mathbb{N}} \) for each \(i \in \mathbb{N} \).

Consider a topology \(\tau \) generated by the family \(\mathcal{P} = \{ W^k_i \cap A : i, j \in \mathbb{N} \} \cup \{ (X \setminus W^k_i) \cap A : i, j \in \mathbb{N} \} \) and \(\rho \in \beta \).

Note that if \(\chi_{\rho} \) is a characteristic function of \(P \) for each \(P \in \mathcal{P} \), then a diagonal mapping \(\varphi = \Delta_{P \in \mathcal{P}} \chi_{\rho} : X \to 2^\omega \) is a Borel bijection. Let \(Z = \varphi(X) \).

Note that \(\{ B_i \} \) is countable open \(\omega \)-cover of \(Z \) for each \(i \in \mathbb{N} \). Since \(B(Z) \) is a dense subset of \(B(X) \), then \(B(Z) \) also has the property \(S_1(\mathcal{D}, \mathcal{D}) \). Since \(C_p(Z) \) is a dense subset of \(B(Z) \), \(C_p(Z) \) has the property \(S_1(\mathcal{D}, \mathcal{D}) \), too.

By Theorem 3.2, the space \(Z \) has the property \(S_1(\mathcal{O}, \mathcal{O}) \). It follows that there is a sequence \(\{ W^k_i(\mathcal{O}) \}_{i \in \mathbb{N}} \) such that \(W^k_i(\mathcal{O}) \in B_1 \) and \(\{ W^k_i(\mathcal{O}) : i \in \mathbb{N} \} \) is an open \(\omega \)-cover of \(Z \). It follows that \(\{ W^k_i(\mathcal{O}) : i \in \mathbb{N} \} \) is Borel \(\omega \)-cover of \(X \).

\((2) \Rightarrow (1) \). Assume that \(X \) has the property \(S_1(\mathcal{B}_T, \mathcal{B}_T) \). Let \(\{ D_k \}_{k \in \mathbb{N}} \) be a sequence countable dense subsets of \(B(X) \) and \(D_k = \{ f^k_i : i \in \mathbb{N} \} \) for each \(k \in \mathbb{N} \). We claim that for any \(f \in B(X) \) there is a sequence \(\{ f_k \} \subset B(X) \) such that \(f_k \in D_k \) for each \(k \in \mathbb{N} \) and \(f \in \{ f_k : k \in \mathbb{N} \} \). Without loss of generality we can assume \(f = 0 \). For each \(f^k_i \in D_k \) let \(W^k_i = \{ x \in X : -\frac{1}{k} < f^k_i(x) < \frac{1}{k} \} \).

If for each \(j \in \mathbb{N} \) there is \(k(j) \) such that \(W^k_1^{(j)}(\mathcal{O}) = X \), then a sequence \(f_k^{(j)} = f_k^{(j)}(\mathcal{O}) \) uniformly converges to \(f \) and, hence, \(f \in \{ f_k^{(j)} : j, i \in \mathbb{N} \} \).

We can assume that \(W^k_i \neq X \) for any \(k, i \in \mathbb{N} \).

(a) \(\{ W^k_i \}_{i \in \mathbb{N}} \) a sequence of Borel sets of \(X \).

(b) For each \(k \in \mathbb{N} \), \(\{ W^k_i : i \in \mathbb{N} \} \) is a \(\omega \)-cover of \(X \).

By (2), \(X \) has the property \(S_1(\mathcal{B}_T, \mathcal{B}_T) \), hence, there is a sequence \(\{ W^k_i(\mathcal{B}_T) \}_{i \in \mathbb{N}} \) such that \(W^k_i(\mathcal{B}_T) \in \{ W^k_i \}_{i \in \mathbb{N}} \) for each \(k \in \mathbb{N} \) and \(\{ W^k_i(\mathcal{B}_T) \}_{i \in \mathbb{N}} \) is a \(\omega \)-cover of \(X \).

Consider \(\{ f_k^{(j)}(\mathcal{B}_T) \} \). We claim that \(f \in \{ f_k^{(j)}(\mathcal{B}_T) : k \in \mathbb{N} \} \). Let \(K \) be a finite subset of \(X \), \(\epsilon > 0 \) and \(U = \{ f, K, \epsilon \} \) be a base neighborhood of \(f \), then there is \(k_0 \in \mathbb{N} \) such that \(0 < k_0 \epsilon < \epsilon \) and \(K \subset W^k_{i(k)} \). It follows that \(f_k^{(j)}(\mathcal{B}_T) \in U \).

Let \(D = \{ d_n : n \in \mathbb{N} \} \) be a dense subspace of \(B(X) \). Given a sequence \(\{ D_i \}_{i \in \mathbb{N}} \) of dense subspace of \(B(X) \), enumerate it as \(\{ D_{n,m} : n, m \in \mathbb{N} \} \). For each \(n \in \mathbb{N} \), pick \(d_{n,m} \in D_{n,m} \) so that \(d_n \in \{ d_{n,m} : m \in \mathbb{N} \} \). Then \(\{ d_{n,m} : m, n \in \mathbb{N} \} \) is dense in \(B(X) \).

In [16], (Theorem 35) and [4] (Corollary 2.10) proved the following result.
Theorem 3.4 (Scheepers). For a separable metric space, the following are equivalent:
1. $C_p(X)$ satisfies $S_{fn}(D, D)$;
2. X satisfies $S_{fn}(\Omega, \Omega)$.

Then for the space $B(X)$ we have an analogous result.

Theorem 3.5. For a set of reals X, the following are equivalent:
1. $B(X)$ satisfies $S_{fn}(D, D)$;
2. X satisfies $S_{fn}(B_{\Omega}, B_{\Omega})$.

Proof. It is proved similarly to the proof of Theorem 3.3.

4 Question of A. Bella, M. Bonanzinga and M. Matveev

In [3], Question 4.3, it is asked to find a sequentially separable selectively separable space which is not selective sequentially separable.

The following theorem answers this question.

Theorem 4.1 (CH). There is a consistent example of a space Z, such that Z is sequentially separable, selectively separable, not selectively sequentially separable.

Proof. By Theorem 40 and Corollary 41 in [15], there is a c-Lusin set X which has the property $S_1(B_{\Omega}, B_{\Omega})$, but X does not have the property $U_{fn}(\Gamma, \Gamma)$.

Consider a space $Z = C_p(X)$. By Velichko’s Theorem ([18]), a space $C_p(X)$ is sequentially separable for any separable metric space X.

(a). Z is sequentially separable. Since X is Lindelöf and X satisfies $S_1(B_{\Omega}, B_{\Omega})$, X has the property $S_1(\Omega, \Omega)$.

By Theorem 3.2, $C_p(X)$ satisfies $S_1(D, D)$, and, hence, $C_p(X)$ satisfies $S_{fn}(D, D)$.

(b). Z is selectively separable. By Theorem 4.1 in [11], $U_{fn}(\Gamma, \Gamma) = U_{fn}(\Gamma \Gamma, \Gamma)$ for Lindelöf spaces. Since X does not have the property $U_{fn}(\Gamma, \Gamma)$, X does not have the property $S_{fn}(\Gamma \Gamma, \Gamma)$. By Theorem 8.11 in [9], $C_p(X)$ does not have the property $S_{fn}(S, S)$.

(c). Z is not selective sequentially separable.

Theorem 4.2 (CH). There is a consistent example of a space Z, such that Z is sequentially separable, countably selectively separable, countably selectively separable, not countably selective sequentially separable.

Proof. Consider the c-Lusin set X (see Theorem 40 and Corollary 41 in [15]), then X has the property $S_1(B_{\Omega}, B_{\Omega})$, but X does not have the property $U_{fn}(\Gamma, \Gamma)$ and, hence, X does not have the property $S_{fn}(B_{\Gamma}, B_{\Gamma})$.

Consider a space $Z = B_1(X)$. By Velichko’s Theorem in [18], a space $B_1(X)$ is sequentially separable for any separable metric space X.

(a). Z is sequentially separable. By Theorem 3.3, $B(X)$ satisfies $S_1(D, D)$. Since Z is dense subset of $B(X)$ we have that Z satisfies $S_1(D, D)$ and, hence, Z satisfies $S_{fn}(D, D)$.

(b). Z is countably selectively separable. Since X does not have the property $S_{fn}(B_{\Gamma}, B_{\Gamma})$, by Theorem 3.1, $B_1(X)$ does not have the property $S_{fn}(S, S)$.

(c). Z is not countably selective sequentially separable.
5 Question of A. Bella and C. Costantini

In [5], Question 2.7, it is asked to find a compact T_2 sequentially separable space which is not selective sequentially separable.

The following theorem answers this question.

Theorem 5.1. ($b < q$) There is a consistent example of a compact T_2 sequentially separable space which is not selective sequentially separable.

Proof. Let D be a discrete space of size b. Since $b < q$, a space 2^b is sequentially separable (see Proposition 3 in [13]).

We claim that 2^b is not selective sequentially separable.

On the contrary, suppose that 2^b is selective sequentially separable. Since $\text{non}(S_{fin}(B_I, B_f)) = b$ (see Theorem 1 and Theorem 27 in [15]), there is a set of reals X such that $|X| = b$ and X does not have the property $S_{fin}(B_I, B_f)$. Hence there exists sequence $(A_n : n \in \mathbb{N})$ of elements of B_I that for any sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each $n, B_n \subseteq A_n$, we have that $\bigcup_{n \in \mathbb{N}} B_n \notin B_f$.

Consider an identity mapping $\text{id} : D \rightarrow X$ from the space D onto the space X. Denote $C_n^i = \text{id}^{-1}(A_n^i)$ for each $A_n^i \in A_n$ and $i \in \mathbb{N}$. Let $C_n = \{ C_n^i \}_{i \in \mathbb{N}}$ (i.e. $C_n = \text{id}^{-1}(A_n)$) and let $S = \{ s_n \}_{n \in \mathbb{N}}$ be a countable sequentially dense subset of $B(D, \{0, 1\}) = 2^b$.

For each $n \in \mathbb{N}$ we consider a countable sequentially dense subset $S_n = \{ f_n^i \}_{i \in \mathbb{N}}$ of $B(D, \{0, 1\})$ where

$S_n = \{ f_n^i \}_{i \in \mathbb{N}} : f_n^i \in B(D, 2) : f_n^i \upharpoonright C_n^i = h_i \text{ and } f_n^i \upharpoonright (X \setminus C_n^i) = 1 \text{ for } i \in \mathbb{N}$.

Since $C_n = \{ C_n^i \}_{i \in \mathbb{N}}$ is a Borel γ-cover of D and S is a countable sequentially dense subset of $B(D, \{0, 1\})$, we have that S_n is a countable sequentially dense subset of $B(D, \{0, 1\})$ for each $n \in \mathbb{N}$.

Indeed, let $h \in B(D, \{0, 1\})$, there is a sequence $\{ s_n \}_{n \in \mathbb{N}} \subset S$ such that $\{ s_n \}_{n \in \mathbb{N}}$ converges to h. We claim that $\{ f_n^i \}_{n \in \mathbb{N}}$ converges to h. Let $K = \{ x_1, \ldots, x_k \}$ be a finite subset of D, $\epsilon = \{ \epsilon_1, \ldots, \epsilon_k \}$ where $\epsilon_j \in \{0, 1\}$ for $j = 1, \ldots, k$, and $W = \{ h, K, \epsilon \} : \{ g \in B(D, \{0, 1\}) : |g(x_j) - h(x_j)| < \epsilon_j \text{ for } j = 1, \ldots, k \}$ be a base neighborhood of h, then there is a number m_0 such that $K \subset C_n^i$ for $i > m_0$ and $h_n \in W$ for $s > m_0$. Since $f_n^i \upharpoonright K = h_n \upharpoonright K$ for each $s > m_0, f_n^i \in W$ for each $s > m_0$. It follows that a sequence $\{ f_n^i \}_{n \in \mathbb{N}}$ converges to h.

Since $B(D, \{0, 1\})$ is selective sequentially separable, there is a sequence $\{ F_n \} = \{ f_n^1, \ldots, f_n^{k(n)} \} : n \in \mathbb{N}$ such that for each $n, F_n \subset S_n$, and $\bigcup_{n \in \mathbb{N}} F_n$ is a countable sequentially dense subset of $B(D, \{0, 1\})$.

For $0 \in B(D, \{0, 1\})$ there is a sequence $\{ f_n^j \}_{j \in \mathbb{N}} \subset \bigcup_{n \in \mathbb{N}} F_n$ such that $\{ f_n^j \}_{j \in \mathbb{N}}$ converges to 0. Consider a sequence $\{ C_n^j \}_{j \in \mathbb{N}}$. Then

1. $C_n^j \subset C_n^i$;
2. $\{ C_n^j \}_{j \in \mathbb{N}}$ is a γ-cover of D.

Indeed, let K be a finite subset of D and $U = \{0, K, \{0\} \}$ be a base neighborhood of 0, then there is a number j_0 such that $f_n^j \in U$ for every $j > j_0$. It follows that $K \subset C_n^j$ for every $j > j_0$. Hence, $\{ A_n^j = \text{id}(C_n^j) : j \in \mathbb{N} \} \in B_f$ in the space X, a contradiction.

Let $\mu = \min\{ k : 2^k \text{ is not selective sequentially separable} \}$. It is well-known that $p \leq \mu \leq q$ (see [3]).

Theorem 5.2. $\mu = \min\{ b, q \}$.

Proof. Let $k < \min\{ b, q \}$. Then, by Proposition 3 in [13], 2^k is a sequentially separable space.

Let X be a set of reals such that $|X| = k$ and X be a Q-set.

Analogously to the proof of implication (2) \Rightarrow (1) in Theorem 3.1, we can claim that $B(X, \{0, 1\}) = 2^X = 2^k$ is selectively sequentially separable.

It follows that $\mu \geq \min\{ b, q \}$.

Since $\mu \leq q$, we suppose that $\mu > b$ and $b < q$. Then, by Theorem 5.1, 2^b is not selectively sequentially separable. It follows that $\mu = \min\{ b, q \}$.

In [3], Question 4.12: is it the case $\mu \in \{ p, q \}$?
A partial positive answer to this question is the existence of the following models of set theory (Theorem 8 in [1]):
1. $\mu = p = b < q$;
2. $p < \mu = b = q$;
and
3. $\mu = p = q < b$.

The author does not know whether, in general, the answer can be negative. In this regard, the following question is of interest.

Question. Is there a model of set theory in which $p < b < q$?

References