Open Mathematics

Research Article

Wen-Jie Hao and Jun-Fan Chen*

Uniqueness theorems for L-functions in the extended Selberg class

https://doi.org/10.1515/math-2018-0107
Received July 6, 2018; accepted October 1, 2018.

Abstract: In this paper, we obtain uniqueness theorems of L-functions from the extended Selberg class, which generalize and complement some recent results due to Li, Wu-Hu, and Yuan-Li-Yi.

Keywords: Meromorphic function, L-function, Selberg class, Value distribution

MSC: 11M36, 30D35, 30D30

1 Introduction

The Riemann hypothesis as one of the millennium problems has been given a lot of attention by many scholars for a long time. Selberg guessed that the Riemann hypothesis also holds for the L-function in the Selberg class. Such an L-function based on the Riemann zeta function as a prototype is defined to be a Dirichlet series

\[L(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \]

of a complex variable \(s = \sigma + it \) satisfying the following axioms [1]:

(i) Ramanujan hypothesis: \(a(n) \ll n^\varepsilon \) for every \(\varepsilon > 0 \).

(ii) Analytic continuation: There exists a nonnegative integer \(m \) such that \((s - 1)^m L(s) \) is an entire function of finite order.

(iii) Functional equation: \(L \) satisfies a functional equation of type

\[\Lambda L(s) = \omega L(1 - \overline{s}), \]

where

\[\Lambda L(s) = L(s) Q K \prod_{j=1}^{K} \Gamma(\lambda_j s + \nu_j) \]

with positive real numbers \(Q, \lambda_j, \) and complex numbers \(\nu_j, \omega \) with \(\text{Re} \nu_j \geq 0 \) and \(|\omega| = 1 \).

(iv) Euler product: \(\log L(s) = \sum_{n=1}^{\infty} \frac{b(n)}{n^s} \), where \(b(n) = 0 \) unless \(n \) is a positive power of a prime and \(b(n) \ll n^\theta \)

for some \(\theta < \frac{1}{2} \).

It is mentioned that there are many Dirichlet series but only those satisfying the axioms (i)-(iii) are regarded as the extended Selberg class [1, 2]. All the L-functions which are studied in this article are from the extended...
Theorem 1.1 (see [1]). If two L-functions with \(a(1) = 1 \) share a complex value \(c \neq \infty \) CM, then they are identically equal.

Remark 1.2. In [5], the authors gave an example that \(L_1 = 1 + \frac{2}{s^2} \) and \(L_2 = 1 + \frac{3}{s^2} \), which showed that Theorem 1.1 is actually false when \(c = 1 \).

In 2011, Li [6] considered values which are shared CM and got

Theorem 1.3 (see [6]). Let \(L_1 \) and \(L_2 \) be two L-functions satisfying the same functional equation with \(a(1) = 1 \) and let \(a_1, a_2 \in \mathbb{C} \) be two distinct values. If \(L_1^{-1}(a_j) = L_2^{-1}(a_j), j = 1, 2 \), then \(L_1 \equiv L_2 \).

In 2001, Lahiri [7] put forward the concept of weighted sharing as follows.

Let \(k \) be a nonnegative integer or \(\infty \), \(c \in \mathbb{C} \cup \{ \infty \} \). We denote by \(E_k(c, f) \) the set of all zeros of \(f - c \), where a zero of multiplicity \(m \) is counted \(m \) times if \(m \leq k \) and \(k + 1 \) times if \(m > k \). If \(E_k(c, f) = E_k(c, g) \), we say that \(f \) and \(g \) share the value \(c \) with weight \(k \) (see [7]).

In 2015, Wu and Hu [8] removed the assumption that both L-functions satisfy the same functional equation in Theorem 1.3. By including weights, they had shown the following result.

Theorem 1.4 (see [8]). Let \(L_1 \) and \(L_2 \) be two L-functions, and let \(a_1, a_2 \in \mathbb{C} \) be two distinct values. Take two positive integers \(k_1, k_2 \) with \(k_1 k_2 > 1 \). If \(E_{k_1}(a_j, L_1) = E_{k_2}(a_j, L_2) \), \(j = 1, 2 \), then \(L_1 \equiv L_2 \).

In 2003, the following question was posed by C.C. Yang [9].

Question 1.5 (see [9]). Let \(f \) be a meromorphic function in the complex plane and \(a, b, c \) are three distinct values, where \(c \neq 0, \infty \). If \(f \) and the Riemann zeta function \(\zeta \) share \(a, b \) CM and \(c \) IM, will then \(f \equiv \zeta \)?

The L-function is based on the Riemann zeta function as the model. It is then valuable that we study the relationship between an L-function and an arbitrary meromorphic function [10–14]. This paper concerns the problem of how meromorphic functions and L-functions are uniquely determined by their c-values. Firstly, we introduced the following theorem.

Theorem 1.6 (see [10]). Let \(a \) and \(b \) be two distinct finite values and \(f \) be a meromorphic function in the complex plane with finitely many poles. If \(f \) and a nonconstant L-function \(L \) share a CM and \(b \) IM, then \(L \equiv f \).

Then, using the idea of weighted sharing, we will prove the following theorem.

Theorem 1.7. Let \(f \) be a meromorphic function in the complex plane with finitely many poles, let \(L \) be a nonconstant L-function, and let \(a_1, a_2 \in \mathbb{C} \) be two distinct values. Take two positive integers \(k_1, k_2 \) with \(k_1 k_2 > 1 \). If \(E_{k_1}(a_j, f) = E_{k_2}(a_j, L) \), \(j = 1, 2 \), then \(L \equiv f \).

Remark 1.8. Note that an L-function itself can be analytically continued as a meromorphic function in the complex plane. Therefore, an L-function will be taken as a special meromorphic function. We can also see that Theorem 1.4 is included in Theorem 1.7.
In 1976, the following question was mentioned by Gross in [15].

Question 1.9 (see [15]). Must two nonconstant entire functions \(f_1 \) and \(f_2 \) be identically equal if \(f_1 \) and \(f_2 \) share a finite set \(S \)?

Recently, Yuan, Li and Yi [16] considered this question leading to the theorem below.

Theorem 1.10 (see [16]). Let \(S = \{ \omega_1, \omega_2, \cdots, \omega_l \} \), where \(\omega_1, \omega_2, \cdots, \omega_l \) are all distinct roots of the algebraic equation \(\omega^n + a \omega^m + b = 0 \). Here \(l \) is a positive integer satisfying \(1 \leq l \leq n, n \) and \(m \) are relatively prime positive integers with \(n \geq 5 \) and \(n > m \), and \(a, b, c \) are nonzero finite constants, where \(c \neq \omega_j \) for \(1 \leq j \leq l \). Let \(f \) be a nonconstant meromorphic function such that \(f \) has finitely many poles in \(\mathbb{C} \), and let \(L \) be a nonconstant \(L \)-function. If \(f \) and \(L \) share \(S \) CM and \(c \) IM, then \(f \equiv L \).

Concerning shared set, we prove the following theorem.

Theorem 1.11. Let \(f \) be an entire function with \(\lim_{\Re(s) \to +\infty} f(s) = k (k \neq \infty) \) and let \(R(a) = 0 \) be a algebraic equation with \(n \geq 2 \) distinct roots, and \(R(k), R(b), R(1) \neq 0 \). Suppose that \(f(s) = \frac{L(s_0)}{b} \) for some \(s_0 \in \mathbb{C} \).

If \(f \) and a nonconstant \(L \)-function \(L \) share \(S \) CM, where \(S = \{ a : R(a) = 0 \} \), then \(R(L) \equiv R(f) \).

Furthermore, we obtain a result which is similar to Theorem 1.10 by different means.

Theorem 1.12. Let \(f \) be an entire function with \(\lim_{\Re(s) \to +\infty} f(s) = k (k \neq \infty) \). Let \(S = \{ \omega_1, \omega_2, \cdots, \omega_l \} \in \mathbb{C} \setminus \{ 1, k, b \} \), where \(\omega_1, \omega_2, \cdots, \omega_l \) are all distinct roots of the algebraic equation \(\omega^{n+m} + a \omega^n + \beta = 0 \), \(1 \leq i \leq n+m \), \(n, m \) are two positive integers with \(n > m + 2 \), \(a, \beta \) are finite nonzero constants. If \(f \) and a nonconstant \(L \)-function \(L \) share \(S \) CM and \(f(s_0) = \frac{L(s_0)}{b} \) for some \(s_0 \in \mathbb{C} \), then \(f \equiv tL \), where \(t \) is a constant such that \(t^d = 1 \), \(d = \gcd(n, m) \).

2 Some lemmas

In this section, we present some important lemmas which will be needed in the sequel. Firstly, let \(f \) be a meromorphic function in \(\mathbb{C} \). The order \(\rho(f) \) is defined as follows:

\[
\rho(f) = \lim \sup_{r \to \infty} \frac{\log T(r, f)}{\log r}.
\]

Lemma 2.1 (see [4], Lemma 1.22). Let \(f \) be a nonconstant meromorphic function and let \(k \geq 1 \) be an integer. Then \(m\left(r, \frac{f^{(k)}}{f}\right) \leq S(r, f) \). Further if \(\rho(f) < +\infty \), then

\[
m\left(r, \frac{f^{(k)}}{f}\right) = O(\log r).
\]

Lemma 2.2 (see [4], Corollary of Theorem 1.5). Let \(f \) be a nonconstant meromorphic function. Then \(f \) is a rational function if and only if \(\lim_{r \to \infty} \frac{T(r, f)}{\log r} < \infty \).

Lemma 2.3 (see [4], Theorem 1.19). Let \(T_1(r) \) and \(T_2(r) \) be two nonnegative, nondecreasing real functions defined in \(r > r_0 > 0 \). If \(T_1(r) = O(T_2(r)) \) (\(r \to \infty, r \notin E \)), where \(E \) is a set with finite linear measure, then

\[
\lim \sup_{r \to \infty} \frac{\log^+ T_1(r)}{\log r} \leq \lim \sup_{r \to \infty} \frac{\log^+ T_2(r)}{\log r},
\]

and

\[
\lim \inf_{r \to \infty} \frac{\log^+ T_1(r)}{\log r} \leq \lim \inf_{r \to \infty} \frac{\log^+ T_2(r)}{\log r}.
\]
which imply that the order and the lower order of $T_1(r)$ are not greater than the order and the lower order of $T_2(r)$ respectively.

Lemma 2.4 (see [4], Theorem 1.14). Let f and g be two nonconstant meromorphic functions. If the order of f and g is $\rho(f)$ and $\rho(g)$ respectively, then

$$\rho(f \cdot g) \leq \max \{\rho(f) \cdot \rho(g)\},$$

$$\rho(f + g) \leq \max \{\rho(f) \cdot \rho(g)\}.$$

Lemma 2.5 (see [17], Lemma 2.7). Let $R(\omega) = \omega^n + a\omega^m + b$, where n, m are positive integers satisfying $n > m$, a, b are finite nonzero complex numbers. Then the algebraic equation $R(\omega) = 0$ has at least $n - 1$ distinct roots.

Lemma 2.6 (see [18], Lemma 8). Let $s > 0$ and t be relatively prime integers, and let c be a finite complex number such that $c^s = 1$. Then there exists one and only one common zero of $\omega^s - 1$ and $\omega^t - c$.

3 Proofs of the theorems

3.1 Proof of Theorem 1.7

First of all, we denote by d the degree of L. Then $d = 2 \sum_{j=1}^{k} \lambda_j > 0$, where k and λ_j are respectively the positive integer and the positive real number in the functional equation of the axiom (iii) of the definition of L-functions. According to a result due to Steuding [1], p.150, we have

$$T(r, L) = \frac{d}{\pi} r \log r + O(r).$$

(2)

Therefore $\rho(L) = 1$ and $S(r, L) = O(\log r)$.

Noting that f has finitely many poles and L at most has one pole at $s = 1$ in the complex plane, it follows that

$$N(r, f) = O(\log r), \quad N(r, L) = O(\log r).$$

(3)

Because f and L share a_1, a_2 weighted k_1, k_2 respectively, by (3), from the first and second fundamental theorems we have

$$T(r, f) \leq \overline{N}\left(r, \frac{1}{f - a_1}\right) + \overline{N}\left(r, \frac{1}{f - a_2}\right) + \overline{N}(r, f) + S(r, f)$$

$$= \overline{N}\left(r, \frac{1}{L - a_1}\right) + \overline{N}\left(r, \frac{1}{L - a_2}\right) + O(\log r) + S(r, f)$$

$$\leq T\left(r, \frac{1}{L - a_1}\right) + T\left(r, \frac{1}{L - a_2}\right) + O(\log r) + S(r, f)$$

$$= 2T(r, L) + O(\log r) + S(r, f).$$

(4)

Then from (4) and Lemma 2.3 we obtain

$$\rho(f) \leq \rho(L).$$

(5)

Similarly,

$$\rho(L) \leq \rho(f).$$

(6)

Combining (5) with (6) yields

$$\rho(f) = \rho(L).$$

(7)

Thus

$$S(r, f) = O(\log r).$$

(8)
We introduce two auxiliary functions below.

\[F_1 = \frac{L'}{L - a_1} - \frac{f'}{f - a_1}, \quad (9) \]

\[F_2 = \frac{L'}{L - a_2} - \frac{f'}{f - a_2}. \quad (10) \]

Next, we assume that \(F_1 \neq 0 \) and \(F_2 \neq 0 \). By (8) and Lemma 2.1 we get

\[m(r, F_i) = O(\log r). \quad (11) \]

By the assumption \(L \) and \(f \) share \((a_1, k_1), (a_2, k_2)\), from (3), (9) and (11) we have

\[k_2 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_2}\right) \leq N\left(r, \frac{1}{F_1}\right) \leq T(r, F_1) + O(1) \leq N(r, F_1) + m(r, F_1) + O(1) \]

\[\leq k_1 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) + \mathcal{N}(r, L) + O(\log r) \]

\[\leq k_1 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) + O(\log r). \quad (12) \]

Similarly, from (3), (10) and (11) we have

\[k_1 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) \leq N\left(r, \frac{1}{F_2}\right) \leq T(r, F_2) + O(1) \leq N(r, F_2) + m(r, F_2) + O(1) \]

\[\leq k_2 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_2}\right) + \mathcal{N}(r, L) + O(\log r) \]

\[\leq k_2 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_2}\right) + O(\log r). \quad (13) \]

Combining (12) with (13) yields

\[\mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) \leq k_1 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_2}\right) + O(\log r) \]

\[\leq k_1 k_2 \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) + O(\log r). \quad (14) \]

Since \(k_1 k_2 > 1 \), from (14) we obtain

\[\mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) = O(\log r). \quad (15) \]

Substituting (15) into (12) implies

\[\mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_2}\right) = O(\log r). \quad (16) \]

Set

\[G = \frac{L - a_1}{f - a_1}. \]

Noting \(L \) and \(f \) share \((a_1, k_1), (a_2, k_2)\), combining (15) with (16) yields

\[\mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) = \mathcal{N}(k_{i+1}\left(r, \frac{1}{f - a_1}\right) = O(\log r), \]

\[\mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_2}\right) = \mathcal{N}(k_{i+1}\left(r, \frac{1}{f - a_2}\right) = O(\log r). \]

Clearly,

\[\mathcal{N}(r, G) \leq N(r, L) + \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) = O(\log r), \quad (17) \]

\[\mathcal{N}\left(r, \frac{1}{G}\right) \leq N(r, f) + \mathcal{N}(k_{i+1}\left(r, \frac{1}{L - a_1}\right) = O(\log r). \quad (18) \]
Set
\[G_1 = \frac{Q(L - a_1)}{f - a_1}, \]
(19)
where \(Q \) is a rational function satisfying that \(G_1 \) is a zero-free entire function. From (17) and (18), it is easy to see that such a \(Q \) does exist. By Lemma 2.2 and Lemma 2.4 we get
\[\rho(G_1) \leq \max\{\rho(Q), \rho(L), \rho(f)\} = 1. \]

By the Hadamard factorization theorem [19], p.384, we know
\[G_1 = \frac{Q(L - a_1)}{f - a_1} = e^\varphi, \]
(20)
where \(\varphi \) is a polynomial of degree at most \(\deg(\varphi) \leq 1 \). We may write \(\varphi = a_0s + b_0 \) for some complex numbers \(a_0, b_0 \). In view of (20) and Hayman [3], p.7, we have
\[T(r, G_1) = T(r, e^{a_0s+b_0}) = O(r). \]
(21)
By (19), the assumption that \(L \) and \(f \) share \(a_2 \), we get that every \(a_2 \)-point of \(L \) has to be 1-point of \(\frac{G_1}{Q} - 1 \). Now (20), (21) and the first fundamental theorem yield
\[N\left(r, \frac{1}{L - a_2}\right) \leq N\left(r, \frac{1}{\frac{G_1}{Q} - 1}\right) \leq T\left(r, \frac{1}{\frac{G_1}{Q} - 1}\right) \leq T(r, G_1) + T(r, Q) + O(1) = O(r). \]
(22)
Similarly, set
\[G_2 = \frac{L - a_2}{f - a_2}. \]
We also get
\[N\left(r, \frac{1}{L - a_1}\right) = O(r). \]
(23)
By (22), (23) and the second fundamental theorem it follows that
\[T(r, L) \leq N\left(r, \frac{1}{L - a_1}\right) + N\left(r, \frac{1}{L - a_2}\right) + N(r, L) + O(\log r) = O(r). \]
(24)
This contradicts (2). Thus, \(F_1 \equiv 0 \) or \(F_2 \equiv 0 \). By integration, we have from (9) that
\[L - a_1 \equiv A(f - a_1), \]
where \(A(\neq 0) \) is a constant. This implies that \(L \) and \(f \) share \(a_1 \) CM. Hence by Theorem 1.6 we deduce Theorem 1.7 holds. If \(F_2 \equiv 0 \), using the same manner, we also have the conclusion.

This completes the proof of Theorem 1.7.

3.2 Proof of Theorem 1.11

First we consider the following function
\[G = \frac{QR(L)}{RF(f)}, \]
(25)
where
\[Q(s) = A(s - 1)^m \]
(26)
is a rational function satisfying that \(G \) has no zeros and no poles in \(\mathbb{C} \); \(A \) is a nonzero finite value; \(m \) is the nonnegative integer in the axiom (ii) of the definition of \(L \)-functions.
We claim that such a Q does exist. By the condition that f and L share S CM, set

$$F = \frac{R(L)}{R(f)}.$$ \hspace{1cm} (27)

We can see that there can be only a pole of f or L such that $F = 0$ or $F = \infty$. Since f has no pole and L has only

one possible pole at $s = 1$, it follows that F has no zero and only one possible pole at $s = 1$. Hence such a Q

doestexist.

Next, assume that a_1, a_2, \cdots, a_n are all distinct roots of $R(a)$. Using the first fundamental theorem we get

$$T(r, L - a_i) = T(r, L) + O(1), \hspace{0.5cm} i = 1, 2, \cdots, n.$$

Noting $n \geq 2$, by the second fundamental theorem we have

$$(n - 1)T(r, f) \leq \sum_{i=1}^{n} N\left(\frac{1}{f - a_i}\right) + \sum_{i=1}^{n} T(r, f) + \sum_{i=1}^{n} N(r, f) + S(r, f)$$

which gives

$$T(r, f) \leq \frac{n}{n - 1} T(r, L) + S(r, f).$$

This together with Lemma 2.3 yields

$$\rho(f) \leq \rho(L). \hspace{1cm} (29)$$

Similarly,

$$\rho(L) \leq \rho(f). \hspace{1cm} (30)$$

By (29), (30) and (2) we obtain

$$\rho(f) = \rho(L) = 1. \hspace{1cm} (31)$$

Also, from the first fundamental theorem we get

$$\rho\left(\frac{1}{f - a_i}\right) = \rho(f) = 1,$$

and then by Lemma 2.2 and Lemma 2.4 we deduce

$$\rho(G) \leq \max(\rho(Q), \rho(L), \rho(f)) = 1.$$

From the Hadamard factorization theorem [19], p.384 we see

$$G = e^{h(s)}, \hspace{1cm} (32)$$

where $h(s)$ is a polynomial of degree $\deg(h(s)) \leq 1$. One can write

$$\Re h(\sigma + it) = \alpha(t)\sigma + \beta(t), \hspace{1cm} (33)$$

a polynomial in σ with $\alpha(t), \beta(t)$ being polynomials in t. Now the claim is $\alpha(t) \equiv 0$. From (25), (27) and (32) we get

$$F = \frac{R(L)}{R(f)} = e^{h(s)}Q^{-1}. \hspace{1cm} (34)$$

Since $\lim_{\sigma \to +\infty} L(s) = 1, \lim_{\sigma \to +\infty} f(s) = k(k \neq \infty), R(k) \neq 0$ and $R(1) \neq 0$, it follows that

$$\lim_{\sigma \to +\infty} \frac{R(L)}{R(f)} = C, \hspace{1cm} (35)$$
where $C \neq 0$ is a finite value. If $\alpha(t) \neq 0$, we obtain $\alpha(t_0) \neq 0$ for some value t_0. If $\alpha(t_0) > 0$, from (34) we know that
\[
|\frac{R(L)}{R(f)}| = |Q^{-1}|e^{\beta(t)}.
\] (36)

Thus from (26), (33), (35) and (36) we can deduce that, $|C| = \infty$ when $\sigma \to +\infty$ with $t = t_0$, which is a contradiction. Similarly, if $\alpha(t_0) < 0$, we have that, $|C| = 0$ when $\sigma \to +\infty$ with $t = t_0$, which is also a contradiction. Therefore $\alpha(t) \equiv 0$. Now by (33) and (36) we get
\[
|\frac{R(L)}{R(f)}| = |Q^{-1}|e^{\beta(t)}.
\] (37)

Combining (35) with (37) yields
\[
\lim_{\sigma \to +\infty} |Q| = \frac{e^{\beta(t)}}{|C|}
\] (38)
for a fixed t. Considering that the limit of $|Q|$ as $\sigma \to +\infty$ is a nonzero finite constant for some value t and $n \geq 2$, in view of (26) we see that $m = 0$, and then $Q(s) \equiv A$. From (38) we have $e^{\beta(t)} = |A||C|$. Thus it follows by (37) that
\[
|\frac{R(L)}{R(f)}| = |C|.
\] (39)

Since $C \neq 0$ is a finite complex number, from (39) we deduce that $\frac{R(L)}{R(f)}$ is a constant. Then by (35) we know that
\[
\frac{R(L)}{R(f)} \equiv C.
\] (40)

From the assumption in the theorem we have $f(s_0) = L(s_0) = b$ for some $s_0 \in \mathbb{C}$. It now follows from (40) that $C = 1$. Thus
\[
\frac{R(L)}{R(f)} \equiv 1.
\] (41)

That is $R(L) \equiv R(f)$.

This completes the proof of Theorem 1.11.

3.3 Proof of Theorem 1.12

First, we have that the algebraic equation $\omega^n + m + \alpha \omega + \beta = 0$ has at least $n + m - 1 \geq 3m + 1 \geq 4$ distinct roots in view of Lemma 2.5. By Theorem 1.11, we get
\[
L^{n+m} + \alpha L^n + \beta \equiv f^{n+m} + \alpha f^n.
\] (42)

Set $H = \frac{1}{f}$. Then by (42) we deduce
\[
\frac{1}{\alpha}L^m = \frac{H^n - 1}{H^{n+m} - 1}.
\] (43)

We discuss two cases:

Case 1. H is a constant. If $H^{n+m} \neq 1$, by (43), we get that L is a constant, which contradicts the assumption that L is a nonconstant L-function. Therefore, $H^{n+m} = 1$, and so it follows by (43) that $H^m = H^n = 1$, that is $f^n = L^n$ and $f^m = L^m$. We get $f^d = L^d$.

Case 2. H is a nonconstant meromorphic function. Note that L has at most one pole. Now we discuss the following two subcases again.

Subcase 2.1. L has no poles. Then, from (43) we get that every 1-point of H^{n+m} has to be 1-point of H^n. Since $H^{n+m} = H^nH^m$, we have any 1-point of H^{n+m} to be a 1-point of H^m. Because $n > m + 2$, it follows that H is a constant, contradicting the assumption.

Subcase 2.2. L has one and only one pole. Then by (43) we know every zero of $H^{n+m} - 1$ has to be zero of $H^n - 1$ with one exception. Put
\[
H^n - 1 = (H - 1)(H - \zeta_1) \cdots (H - \zeta_{n-1}),
\]
Uniqueness theorems for L-functions in the extended Selberg class

$H^{n+m} - 1 = (H - 1)(H - \tau_1)\cdots(H - \tau_{n+m-1}),$

where $\zeta_1, \zeta_2, \cdots, \zeta_{n-1}$ are $n - 1$ distinct finite complex numbers satisfying $\zeta_i^n = 1, \zeta_i \neq 1, 1 \leq i \leq n - 1;$ $\tau_1, \tau_2, \cdots, \tau_{n+m-1}$ are $n + m - 1$ distinct finite complex numbers satisfying $\tau_j^{n+m} = 1, \tau_j \neq 1, 1 \leq j \leq n + m - 1.$

Let $m = 1.$ By Lemma 2.6 we see $H^n - 1$ and $H^{n+1} - 1$ have only one common zero, so H cannot be equal to any $n + m - 2$ values of $\{\tau_1, \tau_2, \cdots, \tau_{n+m-1}\}.$ From $n > m + 2$ it follows that H is a constant, contradicting the assumption.

Let $m \geq 2.$ If any 1-point of H^n is a 1-point of $H^{n+m},$ then any 1-point of H^n is a 1-point of $H^m.$ Note that $n > m + 2.$ This contradicts the assumption that H is nonconstant. If there is at least one $\zeta_i \neq \tau_j, 1 \leq i \leq n - 1,$ $1 \leq j \leq n + m - 1,$ then H cannot be equal to any $m + 1$ values of $\{\tau_1, \tau_2, \cdots, \tau_{n+m-1}\}.$ From $m \geq 2,$ we know H is a constant, contradicting the assumption.

This completes the proof of Theorem 1.12.

Acknowledgement: The authors would like to thank the referees for their thorough comments and helpful suggestions.

Project supported by the National Natural Science Foundation of China (Grant No. 11301076), the Natural Science Foundation of Fujian Province, China (Grant No. 2018J01658) and Key Laboratory of Applied Mathematics of Fujian Province University (Putian University) (Grant No. SX201801).

References