Open Mathematics

Research Article

Xia Zhang* and Yunyan Zhou

On categorical aspects of S-quantales

https://doi.org/10.1515/math-2018-0110
Received July 29, 2018; accepted October 11, 2018.

Abstract: S-quantales are characterized as injective objects in the category of S-posets with respect to a certain class of homomorphisms that are order-preserving mappings. This paper is devoted to exhibitions of categorical structures on S-quantales.

Keywords: Pomonoid, S-poset, Complete lattice, S-quantale, Adjoint situation

MSC: 06F05, 20M30, 20M50

Dedicated to Professor Ulrich Knauer on his 75th Birthday.

1 Introduction

The term quantale was suggested by C.J. Mulvey at the Oberwolfach Category Meeting ([1]) as a “quantization” of the term locale ([2]). An important moment in the development of the theory of quantales was the realization that quantales give a semantics for propositional linear logic in the same way as Boolean algebras give a semantics for classical propositional logic ([3, 4]). Quantales arise naturally as lattices of ideals, subgroups, or other suitable substructures of algebras ([5, 6]).

Algebraic investigations on quantale-like structures, such as quantales, quantale modules, sup-algebras, S-quantales, etc. have been studied in [5], [7], [8], and [9], respectively. Some categorical considerations are also taken into account ([10], [6]). S-quantales were firstly introduced by Zhang and Laan in [11], which have been shown to play an important role in the theory of injectivity on the category of S-posets. The current paper is devoted to the study of categorical properties of S-quantales.

In this work, S is always a pomonoid, that is, a monoid S equipped with a partial order \leq such that $ss' \leq tt'$ whenever $s \leq t, s' \leq t'$ in S. A poset (A, \leq) together with a mapping $A \times S \rightarrow A$ (under which a pair (a, s) maps to an element of A denoted by as) is called an S-poset, denoted by A_S, if for any $a, b \in A_S, s, t \in S$,

1. $a(st) = (as)t$,
2. $a1 = a$,
3. $a \leq b, s \leq t$ imply that $as \leq bt$.

S-poset morphisms are order-preserving mappings which also preserve the S-action. We denote the category of S-posets with S-poset morphisms by Pos_S. An S-subposet of an S-poset A_S is an action-closed subset of A_S whose partial order is the restriction of the order from A_S.

*Corresponding Author: Xia Zhang: School of Mathematical Sciences, South China Normal University, 510631 Guangzhou, China, E-mail: xzhang@m.scnu.edu.cn
Yunyan Zhou: School of Mathematical Sciences, South China Normal University, 510631 Guangzhou, China, E-mail: 1173842289@qq.com

Open Access. © 2018 Zhang and Zhou, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.
Clearly, S-posets are generalizations of S-acts, whose relying category is denoted by Act_S.

Recall that an S-poset A_S is an S-quantale (11) if

1. the poset A is a complete lattice;
2. $(\vee M)s = \vee \{ ms \mid m \in M \}$ for each subset M of A and each $s \in S$.

An S-quantale morphism is a mapping between S-quantales which preserves both S-actions and arbitrary joins. An S-subquantale of an S-quantale A_S is exactly the relative S-subposet of A_S which is closed under arbitrary joins.

We denote the category of S-quantales with S-quantale morphisms by Quant_S. This work is devoted to the presentation of categorical aspects in Quant_S. We explore limits and colimits, monomorphisms and epimorphisms, respectively, and exhibit adjoint situations accordingly.

Lemma 1.1. The bottom of an S-quantale is a zero element.

Proof. The result follows by the fact that for the bottom $\bot A_S$ of an S-quantale A_S, and any $s \in S$,

$$\bot A_Ss = (\vee \emptyset)s = \vee \emptyset s = \bot = \bot A_S.$$

Since an S-quantale morphism $f : A_S \to B_S$ preserves all joins, it follows by the adjoint functor theorem that it has a right adjoint $f^* : B_S \to A_S$, satisfying

$$f(a) \leq b \iff a \leq f^*(b),$$

for all $a \in A_S$, $b \in B_S$.

Lemma 1.2. Let $f : A_S \to B_S$ be an S-quantale morphism. Then f preserves the bottom.

Proof. Denote by $\bot A_S$ the bottom of A_S. Then $\bot A_S \leq f^*(b)$, for every $b \in B_S$. By (1), we have $f(\bot A_S) \leq b$.

2 Limits and colimits in Quant_S

Products and coproducts

Proposition 2.1. The product of a family of S-quantales is their cartesian product with componentwise action, and order.

Proposition 2.2. The coproduct of a family of S-quantales $\{X_i\}_{i \in I}$ is $(\prod_{i \in I} X_i, (\mu_j)_{j \in I})$, where $\mu_j : X_j \to \prod_{i \in I} X_i$, $j \in I$, is defined by

$$\mu_j(x) = (\overline{x}_i)_{i \in I}, \text{ where } \overline{x}_i = \begin{cases} x & i = j, \\ \bot_{X_i} & i \neq j. \end{cases}$$

Proof. Clearly, μ_j is an S-quantale morphism for every $j \in I$. Let $f_j : X_j \to Q_S$, $j \in I$, be S-quantale morphisms. Define a mapping $\psi : \prod_{i \in I} X_i \to Q_S$ by

$$\psi((x_i)_{i \in I}) = \bigvee_{i \in I} f_i(x_i),$$

for any $(x_i)_{i \in I} \in \prod_{i \in I} X_i$. It is easy to see that ψ preserves S-actions. For arbitrary indexed set K, we have

$$\psi\left(\bigvee_{k \in K} (x_i)_{i \in I}\right) = \psi\left(\bigvee_{k \in K} (x_i)\right)_{i \in I} = \bigvee_{i \in I} f_i\left(\bigvee_{k \in K} x_i\right) = \bigvee_{k \in K} \psi((x_i)_{i \in I}).$$

Moreover, by Lemma 1.2, $f_i(\bot_{X_i}) = \bot_{Q_S}$, for each $i \in I$. Hence

$$\psi(\mu_j(x)) = \psi((\overline{x}_i)_{i \in I}) = \bigvee_{i \in I} f_i(\overline{x}_i) = f_j(x).$$
for any \(j \in I, \ x \in X_j \).

Finally, suppose that there exists an \(S \)-quantale morphism \(\phi : \prod_{i \in I} X_i \rightarrow Q_S \) such that \(\phi \mu_i = f_i \), for every \(i \in I \). Then, for each \((x_i)_{i \in I} \in \prod_{i \in I} X_i \), one gets that

\[
\phi((x_i)_{i \in I}) = \phi \left(\bigvee_{i \in I} \mu_i(x_i) \right) = \bigvee_{i \in I} \phi \mu_i(x_i) = \bigvee_{i \in I} f_i(x_i) = \psi((x_i)_{i \in I}),
\]

and hence \(\phi = \psi \) as needed.

\[\Box \]

Equalizers, coequalizers, pullbacks, and pushouts

Proposition 2.3. Let \(f, g : A_S \rightarrow B_S \) be morphisms of \(S \)-quantales. The equalizer of \(f \) and \(g \) is given by \(E = \{ a \in A_S \mid f(a) = g(a) \} \), with action and order inherited from \(A_S \).

Proof. Clearly, \(E \) is an \(S \)-poset, and a complete lattice. So it is an \(S \)-quantale by the fact that \(f \) and \(g \) preserve arbitrary joins. Let \(\iota : E \rightarrow A \) be the inclusion mapping. For any morphism \(e : E \rightarrow A \) with \(fe = ge \), since \(e(E) \subseteq E \), it follows that \(\overline{e} \), which is the codomain restriction of \(e \), is the unique morphism fulfilling \(\iota \overline{e} = e \).

By [12] Theorem 12.3, we immediately get that \(\text{Quant}_S \) is complete.

Proposition 2.4. The category \(\text{Quant}_S \) is complete.

Let \(\rho \) be a congruence on \(S \)-quantale \(A_S \). In a natural way, the quotient \(A/\rho \) constitutes an \(S \)-quantale equipped with the order defined by a \(\rho \)-chain, where the joins in \(A/\rho \) are

\[
\bigvee_{i \in I} [a_i]_\rho = \left[\bigvee_{i \in I} a_i \right]_\rho,
\]

and the canonical mapping \(\pi : A_S \rightarrow (A/\rho)_S \) becomes an \(S \)-quantale morphism, provided that \(\rho = \ker \pi \) ([9]).

For \(H \subseteq A_S \times A_S \), the corresponding \(S \)-quantale congruence generated by \(H \), will be denoted by \(\theta(H) \).

Proposition 2.5. Let \(f, g : A_S \rightarrow B_S \) be morphisms of \(S \)-quantales. The coequalizer of \(f \) and \(g \) is the quotient \(\left(B/\theta(H) \right)_S \), where \(H = \{ (f(a), g(a)) \mid a \in A_S \} \).

Proof. Let \(f, g : A_S \rightarrow B_S \) be morphisms of \(S \)-quantales, \(H = \{ (f(a), g(a)) \mid a \in A_S \} \), \(\pi \) be the canonical mapping from \(B_S \) to \((B/\theta(H))_S \). Clearly, \(\pi f = \pi g \). For any \(S \)-quantale morphism \(h : B_S \rightarrow C_S \) satisfying \(hf = hg \), we obtain that \(\ker \pi \subseteq \ker h \), since \((f(a), g(a)) \in \ker h \), for \(a \in A_S \).

Now define a mapping \(\bar{h} : (B/\theta(H))_S \rightarrow C_S \) by

\[
\bar{h}([b]_{\theta(H)}) = h(b),
\]

for \([b]_{\theta(H)} \in (B/\theta(H))_S \). Clearly \(\bar{h} \) is an \(S \)-act morphism and preserves arbitrary joins by (3). It is quite routine to check that \(\bar{h} \) is the unique morphism satisfying \(\bar{h} \pi = h \).

\[\Box \]

Proposition 2.6. Let \(f : A_S \rightarrow C_S, g : B_S \rightarrow C_S \) be morphisms of \(S \)-quantales. The pullback of \(f \) and \(g \) is the \(S \)-subposet \(P = \{ (a, b) \in (A \times B)_S \mid f(a) = g(b) \} \) of \((A \times B)_S \), together with the restricted projections of \(P_S \) into \(A_S \) and \(B_S \).

Proof. It is known that \(P_S \) is an \(S \)-quantale. For any \(S \)-quantale \(Q_S \) and an pair of morphisms \(f_1 : Q_S \rightarrow A_S, f_2 : Q_S \rightarrow B_S \) with \(f_1 = gf_2 \), one has that \((f_1(q), f_2(q)) \in P_S \), for any \(q \in Q_S \). Now define a mapping \(\varphi : Q_S \rightarrow P_S \) by

\[
\varphi(q) = (f_1(q), f_2(q)),
\]

for \(q \in Q_S \). One gets that

\[
\varphi(q)s = (f_1(q), f_2(q))s = (f_1(q)s, f_2(q)s) = (f_1(qs), f_2(qs)) = \varphi(qs),
\]

for any natural number \(s \). Hence,
for each \(q \in Q_S \), \(s \in S \), and
\[
\varphi \left(\bigvee_{i \in I} q_i \right) = \left(f_1 \left(\bigvee_{i \in I} q_i \right), f_2 \left(\bigvee_{i \in I} q_i \right) \right) = \left(\bigvee_{i \in I} f_1(q_i), \bigvee_{i \in I} f_2(q_i) \right) = \bigvee_{i \in I} \varphi(q_i),
\]
for all \(q_i \in Q_S \), \(i \in I \). If \(\pi_A : P_S \to A_S \) and \(\pi_B : P_S \to B_S \) are the restricted projections, then \(f \pi_A = g \pi_B \). Straightforward checking shows that \(\varphi \) is the unique morphism satisfying \(\pi_A \varphi = f_1 \) and \(\pi_B \varphi = f_2 \).

Proposition 2.7. Let \(f : A_S \to B_1 \), \(g : A_S \to B_2 \) be morphisms of \(S \)-quantales. The pushout of \(f \) and \(g \) is \((B_1 \times B_2)/\theta(H)_S\), together with \(\mu_1 \) and \(\mu_2 \), where \(\mu_i : (B_1 \times B_2)_S \to (B_1 \times B_2)/\theta(H)_S \), \(i = 1, 2 \), are defined as in Proposition 2.2. \(\pi \) is the canonical mapping, \(H = \{ (\mu_1 f(a), \mu_2 g(a)) \mid a \in A_S \} \).

Proof. Since \((B_1 \times B_2)_S, (\mu_1, \mu_2))\) is the coproduct of \((B_1, B_2)\) by Proposition 2.2, the coequalizer of \(\mu_1 f \) and \(\mu_2 g \) is the quotient \((B_1 \times B_2)/\theta(H)_S\), where \(H = \{ (\mu_1 f(a), \mu_2 g(a)) \mid a \in A_S \} \), by Proposition 2.5. The result follows immediately by [12] Remark 11.31. \(\square \)

3 Monomorphisms

This section contributes to the presentation of several kinds of monomorphisms in the category \(\text{Quant}_S \). It is shown that different from the case of \(S \)-posets (see [13]), monomorphisms in \(\text{Quant}_S \) coincide with order-embeddings, which are precisely injective morphisms. It thus leads to the strengthening results that these classes of monomorphisms are also in accordance with those labeled regular and extremal in \(\text{Quant}_S \), which are exactly the category-theoretic embeddings when \(\text{Quant}_S \) is considered as a concrete category over \(\text{Set} \), \(\text{Act}_S \), and \(\text{Pos}_S \), respectively.

Proposition 3.1. Let \(f : A_S \to B_S \) be a morphism of \(S \)-quantales. Then the following statements are equivalent:

1. \(f \) is a monomorphism;
2. \(f \) is injective;
3. \(f \) is an order-embedding.

Proof. It is enough to show the implications \((1) \Rightarrow (2)\) and \((1) \Rightarrow (3)\) hold.

Let \(f : A_S \to B_S \) be a monomorphism of \(S \)-quantales. Consider \(S \)-subquantale \(\ker f \) of the product \((A \times A)_S\), and the restricted projection mappings \(h_i : \ker f \to A \), \(i = 1, 2 \). For any \((x, y) \in \ker f\), equalities
\[
fh_1(x, y) = f(x) = f(y) = fh_2(x, y)
\]
imply that \(fh_1 = fh_2 \) and hence \(h_1 = h_2 \) by assumption. Therefore, \(x = h_1(x, y) = h_2(x, y) = y \), and hence \(f \) is injective as needed.

It remains to prove that \(f \) is an order-embedding whenever it is a monomorphism. Suppose that \(f(a_1) \leq f(a_2) \) for \(a_1, a_2 \in A_S \). Then
\[
f(a_2) = f(a_1) \lor f(a_2) = f(a_1 \lor a_2).
\]
According to the above result of \(f \) being injective, we soon obtain that \(a_1 \leq a_2 \), and thus \(f \) is an order-embedding. \(\square \)

Lemma 3.2. Each inclusion mapping in \(\text{Quant}_S \) is a regular monomorphism.

Proof. Suppose that \(A_S \) is an \(S \)-subquantale of \(B_S \). Let \((B \times B)_S, (\mu_1, \mu_2)\) be the coproduct of \((B_S, B_S)\), described as in Proposition 2.2. Write
\[
R = \{ ((a, \bot), (\bot, a)) \mid a \in A_S \},
\]
where \(\bot \) is the bottom element of \(B_S \). Then the relation \(\rho \), which is defined by
\[
\rho = \left\{ (x \lor a, y \lor b), (x' \lor a', y' \lor b') \mid x, y, x', y' \in B_S, a, b, a', b' \in A_S, x \lor b = x' \lor b', y \lor a = y' \lor a' \right\},
\]
is the smallest congruence relation on $B \times B$ containing R. So $((B \times B)/\rho)_S$ becomes an S-quantale equipped with a suitable order defined by a ρ-chain, and the canonical mapping $\pi: (B \times B)_S \to ((B \times B)/\rho)_S$ given by $\pi(x, y) = [(x, y)]_\rho$, for each $(x, y) \in (B \times B)_S$, is a morphism.

Next we show that the inclusion mapping $\iota_A : A \to B$ is the equalizer of $\pi_{\mu_1} = \pi_{\mu_2}$. Suppose that $h : E_S \to B_S$ is any monomorphism satisfying $\pi_{\mu_1} h = \pi_{\mu_2} h$. Then for any $e \in E_S$, the equalities

$$[(h(e), \bot)]_\rho = \pi(h(e), \bot) = \pi_{\mu_1} h(e) = \pi_{\mu_2} h(e) = \pi(\bot, h(e)) = [(\bot, h(e))]_\rho$$

indicate that $((h(e), \bot), (\bot, h(e))) \in \rho$. According to the definition of ρ, we deduce that $(h(e), \bot) = (x \vee a, y \vee b)$ and $(\bot, h(e)) = (x' \vee a', y' \vee b')$ for some $x, y, x', y' \in B_S, a, a', b, b' \in A_S$. So $y = b = \bot, x = a' = \bot$, and correspondingly,

$$a = \bot \vee a = y \vee a = y' \vee a' = y' = \bot,$$

and

$$x = x' \bot \vee b' = b'.$$

Therefore, we have $h(e) = x \vee a = b' \vee a \in A_S$, i.e., $h(E) \subseteq A_S$. As a consequence, $\overline{h} : E \to A$ is the unique morphism satisfying $\iota_A \overline{h} = h$.

Theorem 3.3. Let $f : A_S \to B_S$ be a morphism of S-quantales. Then the following assertions are equivalent:

1. f is a regular monomorphism;
2. f is an extremal monomorphism;
3. f is a monomorphism;
4. f is a Quant_S-embedding over Set;
5. f is a Quant_S-embedding over Act_S;
6. f is a Quant_S-embedding over Pos_S.

Proof. (1) \Rightarrow (2) \Rightarrow (3) are general category-theoretic results.

(3) \Rightarrow (4). Suppose that $f : A_S \to B_S$ is a monomorphism. Let $g : C_S \to A_S$ be a mapping with $fg : C_S \to B_S$ being an S-quantale morphism. Then g preserves arbitrary joins by the fact that for $a_i \in C_S, i \in I$,

$$fg\left(\bigvee_{i \in I} a_i\right) = \bigvee_{i \in I} fg(a_i) = f\left(\bigvee_{i \in I} g(a_i)\right),$$

and f being injective by Proposition 3.1. Similarly, we get that g preserves S-actions. Thus f is initial and then an S-quantale embedding over Set.

(4) \Rightarrow (3), (4) \Rightarrow (5) are clear.

(6) \Rightarrow (4). Let $f : A_S \to B_S$ be a Quant_S-embedding over Pos_S. $g : C_S \to A_S$ a mapping provided that $fg : C_S \to B_S$ is a morphism in Quant_S. We are going to show that g is an S-poset morphism. This is the case since

$$fg(as) = fg(a)s = f(g(a)s),$$

for any $a \in A_S, s \in S$, and

$$fg(a_2) = fg(a_1 \vee a_2) = fg(a_1) \vee fg(a_2) = f\left(g(a_1) \vee g(a_2)\right),$$

for $a_1 \leq a_2$ in A_S. Note that the monomorphisms in Pos_S are just the S-poset morphisms with injective underlying mappings, we immediately achieve that $g(as) = g(a)s$ and $g(a_1) \leq g(a_2)$. Therefore, g is an S-poset morphism as required.

(3) \Rightarrow (1). This follows by [12] Proposition 7.53 (2) and Lemma 3.2.

4 Epimorphisms

Dual to discussions on monomorphisms studied in Section 3, this section is intended to motivate our investigation on relationships between various type of epimorphisms in Quant_S. However, the characterization of
epimorphisms in Quant_S is quite complicated. So we merely cite the result and the reader is suggested to find complete illustrations in [14].

Proposition 4.1 ([14] Th. 4.2). *Epimorphisms in Quant_S are exactly onto morphisms.*

Theorem 4.2. For a morphism $f : A_S \to B_S$ of S-quantales, the following statements are equivalent:

1. f is a regular epimorphism;
2. f is an extremal epimorphism;
3. f is an epimorphism;
4. f is a Quant_S-quotient morphism over Set;
5. f is a Quant_S-quotient morphism over Act_S;
6. f is a Quant_S-quotient morphism over Pos_S.

Proof. (1) \Rightarrow (2) \Rightarrow (3) are clear.

(3) \Rightarrow (4). Let $g : B_S \to C_S$ be a mapping between S-quantales such that gf is an S-quantale morphism. Let us verify that g is an S-quantale morphism, as well. It is easy to see that g is an S-poset morphism. Since f is an epimorphism, it is onto by Proposition 4.1. Hence we may assume that for any $M \subseteq B_S$, $\forall M = f(a)$ for some $a \in A_S$. By the reason that f preserves arbitrary joins, we have

$$f(a) = \bigvee M = \bigvee_{x \in f^{-1}(M)} f(x) = \left(\bigvee_{x \in f^{-1}(M)} x \right).$$

Consequently,

$$g(\bigvee M) = gf(a) = g\left(\bigvee_{x \in f^{-1}(M)} x \right) = \bigvee_{x \in f^{-1}(M)} g(x) = \bigvee_{m \in M} g(m).$$

(4) \Rightarrow (3), (4) \Rightarrow (5) \Rightarrow (6) are clear.

(6) \Rightarrow (2). Let $f : A_S \to B_S$ be a Quant_S-quotient morphism over Pos_S. Suppose that $g : A_S \to C_S$ and $h : C_S \to B_S$ are S-quantale morphisms such that $f = hg$ and h is a monomorphism. Then h is injective by Proposition 3.1. Note that f is a Pos_S-epimorphism by hypotheses, and hence is surjective. So h is surjective, as well, and thus bijective. Now, considering the inverse mapping h^{-1} with $g = h^{-1}f$, we remain to show that h^{-1} is an S-poset morphism. In fact, f being onto indicates that h^{-1} is action-preserving. Observe that

$$h\left(h^{-1}(b) \bigvee h^{-1}(b') \right) = hh^{-1}(b) \bigvee hh^{-1}(b') = b \bigvee b' = hh^{-1}(b'),$$

for any $b \preceq b'$ in B_S. Thus $h^{-1}(b) \bigvee h^{-1}(b') = h^{-1}(b')$, which expresses that h^{-1} is an S-poset morphism, and hereby an S-quantale morphism by assumption.

\[\square\]

5 Adjoint situations

The final part is devoted to observation on the adjoint situation between Pos and Quant_S. By a *free S-quantale on a poset P* we mean an S-quantale Q_S together with a monotone mapping $\psi : P \to Q_S$ with the universal property that given any S-quantale A_S and a monotone mapping $f : P \to A_S$, there exists a unique S-quantale morphism $\tilde{f} : Q_S \to A_S$ such that f can be factored through.

Lemma 5.1 ([13] Th.10). *For a given poset P and a pomonoid S, the free S-poset on P is given by $P \times S$, with componentwise order and the action $(x, s) t = (x, st)$, for every $x \in P$, $s, t \in S$.*

Let $(P \times S)_S$ be the free S-poset presented in Lemma 5.1. Write

$$\Omega(P \times S) = \{ D \subseteq P \times S \mid D = D1 \},$$
where D_i is the down-set of D for $D \subseteq P \times S$, more precisely,

$$D_i = \{(p, s) \in P \times S \mid (p, s) \leq (p_1, s_1) \text{ for some } (p_1, s_1) \in D\}.$$

Note that $(p \downarrow \times s_1) \downarrow = p \downarrow \times s_1$ provides that $p \downarrow \times s_1 \in \Omega(P \times S)$ for every element $p \in P$, $s \in S$. Define an action * on $\Omega(P \times S)$ by

$$D \ast t := \{(p, s) \in P \times S \mid (p, s) \leq (p_1, s_1 t) \text{ for some } (p_1, s_1) \in D\},$$

for $t \in S$. Then it is clear that $D \ast t = (Dt) \downarrow$. We claim that $(\Omega(P \times S)_S, \ast, \subseteq)$ is the free object in Quant$_S$.

Proposition 5.2. Let S be a pomonoid, P be a poset. Then $(\Omega(P \times S)_S, \ast, \subseteq)$ is an S-quantale.

Proof. Observe first that

$$(D \ast t_1) \ast t_2 = \{(p, s) \in P \times S \mid (p, s) \leq (p_1, s_1 t_2) \text{ for some } (p_1, s_1) \in D \ast t_1\}$$

$$= \{(p, s) \in P \times S \mid (p, s) \leq (p_1, s_1 t_2), (p_1, s_1) \leq (p_2, s_2 t_1) \text{ for some } (p_2, s_2) \in D\}$$

$$= \{(p, s) \in P \times S \mid (p, s) \leq (p_1, s_1 t_2), (p_2, s_2) \in D\}$$

$$= D \ast (t_1 t_2)$$

for any $t_1, t_2 \in S$, $D \in \Omega(P \times S)_S$, and $D \ast 1 = (D1) \downarrow = D$. This shows that $(\Omega(P \times S)_S, \ast)$ is an S-act. Clearly, $D \ast s \subseteq D \ast t$, whenever $D_1 \subseteq D_2$ in $\Omega(P \times S)_S$, and $s \leq t$ in S. So $\Omega(P \times S)_S$ is an S-poset. It is straightforward to check that $(\bigcup_{i \in I} D_i) \ast t = \bigcup_{i \in I} (D_i \ast t)$ for every $D_i \in \Omega(P \times S)_S$, $i \in I$, $t \in S$. \hfill \Box

Lemma 5.3 comes true directly by the definition of $\Omega(P \times S)_S$.

Lemma 5.3. Let S be a pomonoid, P be a poset. Then $D = \bigcup_{(p, s) \in D} (p \downarrow \times s_1)$ for every $D \in \Omega(P \times S)_S$.

Lemma 5.4. Let S be a pomonoid, P be a poset. Then $p \downarrow \times t_1 = (p \downarrow \downarrow \downarrow 1) \ast t$ holds in $\Omega(P \times S)_S$ for every $p \in P$, $t \in S$.

Proof. It is clear that $(q, s) \in (p \downarrow \times t_1) \ast t$ for every $(q, s) \in p \downarrow \times t_1$, since $(q, s) \leq (p, t)$. On the other hand, for any $(q, s) \in (p \downarrow \times t_1) \ast t$, $(q, s) \leq (p_1, s_1 t) = (p_1, s_1) t$ for some $(p_1, s_1) \in p \downarrow \times t_1$, it follows that $(q, s) \leq (p, 1) t = (p, t)$. Hence $(q, s) \in p \downarrow \times t_1$. \hfill \Box

Theorem 5.5. Let S be a pomonoid, P be a poset. Then the free S-quantale on P is given by the S-quantale $\Omega(P \times S)_S$.

Proof. Define a mapping $\tau : P \rightarrow \Omega(P \times S)_S$ by $\tau(p) = p \downarrow \downarrow \downarrow 1$ for every $p \in P$. Obviously, τ is order-preserving. Let Q_S be an S-quantale, $f : P \rightarrow Q_S$ be any monotone mapping. Define a mapping $\bar{f} : \Omega(P \times S)_S \rightarrow Q_S$ by

$$\bar{f}(D) = \bigvee \{f(p)s \mid (p, s) \in D\},$$

for every $D \in \Omega(P \times S)_S$. We claim that \bar{f} is the unique S-quantale morphism with the property that $\bar{f} \tau = f$.

It is clear that \bar{f} preserves S-actions. Take $D_i \in \Omega(P \times S)_S$, $i \in I$, then equalities

$$\bar{f}
\left(\bigcup_{i \in I} D_i\right)
= \bigvee \left\{f(p)s \mid (p, s) \in \bigcup_{i \in I} D_i\right\}
= \bigvee_{i \in I} \left\{f(p)s \mid (p, s) \in D_i\right\}
= \bigvee_{i \in I} \bar{f}(D_i)$$

indicate that \bar{f} preserves arbitrary joins. Evidently, for any $p \in P$,

$$\bar{f} \tau(p) = \bar{f}(p \downarrow \downarrow \downarrow 1) = \bigvee \{f(q)s \mid (q, s) \in p \downarrow \downarrow \downarrow 1\} \leq f(p),$$

while the fact that $f(p)$ being one of the terms in the sup that defines $\bar{f} \tau(p)$ guarantees the opposite implication. Suppose that $\bar{f} : \Omega(P \times S)_S \rightarrow Q_S$ is an S-quantale morphism such that $\bar{f} \tau = f$. Then by Lemma 5.3 and Lemma 5.4, we achieve that

$$\bar{f}^\prime(D) = \bar{f}
\left(\bigcup_{(p, s) \in D} (p \downarrow \times s_1)\right)
= \bigvee \left\{\bar{f}^\prime(p \downarrow \times s_1) \mid (p, s) \in D\right\}
= \bigvee \left\{\bar{f}^\prime((p \downarrow \times 1) \ast s) \mid (p, s) \in D\right\}$$
\[
\bigvee_{(p,s)\in D} f'(p) \times 1_\downarrow \\sigma = \bigvee_{(p,s)\in D} f'(\tau)(p)s = \bigvee_{(p,s)\in D} f(p)s = \bar{f}(D),
\]
for every \(D \in \Omega(P \times S)_S\), which finishes our proof. \(\square\)

Corollary 5.6. The category \(\text{Quant}_S\) has a separator.

Proof. Let \(f, g : A_S \to B_S\) be a pair of morphisms in \(\text{Quant}_S\) with \(f \neq g\). Then there exists \(a \in A_S\) such that \(f(a) \neq g(a)\). Let \(P\) be a poset. Define a mapping \(k : P \to A_S\) by \(k(p) = a, \forall p \in P\). We are aware that \(k\) is a morphism in \(\text{Pos}\). Hence there is a unique \(S\)-quantale morphism \(\tilde{k} : \Omega(P \times S)_S \to A_S\) with \(\tilde{k} \tau = k\), where \(\tau : P \to \Omega(P \times S)_S\) is defined as in Theorem 5.5. This yields that \(f\tilde{k} \neq g\tilde{k}\), and consequently gives that \(\Omega(P \times S)_S\) is a separator. \(\square\)

We thereby obtain a free functor from the category of posets into the category of \(S\)-quantales, which is shown to be left adjoint to the forgetful functor.

Proposition 5.7. There is a free functor \(F : \text{Pos} \to \text{Quant}_S\) given by

\[
\begin{array}{ccc}
P & \longrightarrow & FP \\
f \downarrow & & \downarrow Ff \\
Q & \longrightarrow & FQ,
\end{array}
\]

where \(FP = \Omega(P \times S)_S\), and

\[
Ff(D) = \{(x, y) \in Q \times S \mid (x, y) \leq (f(p), s)\text{ for some } (p, s) \in D\},
\]
for any monotone mapping \(f : P \to Q\) and \(D \in FP\).

Theorem 5.8. The free functor \(F : \text{Pos} \to \text{Quant}_S\) is left adjoint to the forgetful functor \([_] : \text{Quant}_S \to \text{Pos}\).

Proof. Let us prove that \(\eta : \text{id}_{\text{Pos}} \to [_]F\) with \(\eta_P : P \to [\Omega(P \times S)_S]_S\), where \(P\) is a \(\text{Pos}\)-object, \(\eta_P(p) = p \downarrow \times 1_\downarrow\), \(\forall p \in P\), is a natural transformation. Suppose that \(f : P \to P^{'\prime}\) is a morphism in \(\text{Pos}\). Then

\[
Ff \circ \eta_{P'}(p) = Ff(p \downarrow \times 1_\downarrow) = \{(x, y) \in P^{'\prime} \times S \mid (x, y) \leq (f(\tilde{p}), s)\text{ for some } (\tilde{p}, s) \in p \downarrow \times 1_\downarrow\}
\]
\[
= \{(x, y) \in P^{'\prime} \times S \mid (x, y) \leq (f(p), s) \leq (f(p), 1), (\tilde{p}, s) \in p \downarrow \times 1_\downarrow\},
\]
for \(p \in P\), and

\[
(\eta_{P'} \circ f)(p) = \eta_{P'}(f(p)) = f(p) \downarrow \times 1_\downarrow.
\]

It results in \(Ff \circ \eta_{P'} = \eta_{P'} \circ f\) as needed. Now, by Theorem 5.5 and [12] 19.4(2), we obtain that \(F\) is left adjoint to \([_]\). \(\square\)

Acknowledgement: This work was supported by the Natural Science Foundation of Guangdong Province, China under Grant number 2016A030313832, the Science and Technology Program of Guangzhou, China under Grant number 201607010190, the State Scholarship Fund, China under Grant number 201708440512, and the research funding of School of Mathematical Sciences, SCNU under Grant number 2016YN32.

References