Let k be an integer greater than 1 and let N be a positive integer. The space of cusp forms of weight $2k$ for $\Gamma_0(N)$ is denoted by $S_{2k}(N)$. Throughout this paper let $p = 1$ or a prime number. For $\kappa \in \mathbb{Z} + \frac{1}{2}$ we denote by $M_{\kappa}^!(\Gamma_0(4p))$ the space of weakly holomorphic modular forms of weight κ on $\Gamma_0(4p)$. As usual, $M_{\kappa}(\Gamma_0(4p))$ (resp. $S_{\kappa}(\Gamma_0(4p))$) stands for the space of weight κ modular forms (resp. cusp forms) on $\Gamma_0(4p)$. Let $H_\kappa(\Gamma_0(4p))$ be the space of weight κ harmonic weak Maass forms on $\Gamma_0(4p)$. Let $M_{\kappa}^!(p)$ (resp. $H_{2-\kappa}(\Gamma_0(4p))$) denote the subspace of $M_{\kappa}^!(\Gamma_0(4p))$ (resp. $H_{2-\kappa}(\Gamma_0(4p))$), in which each form satisfies Kohnen’s plus space condition, that is, its Fourier expansion is supported only on those $n \in \mathbb{Z}$ for which $(-1)^{\kappa - \frac{3}{2}} n \equiv 0 \pmod{4p}$. Let $\kappa = k + \frac{1}{2}$ and $M_{\kappa}(p)$ (resp. $S_{\kappa}(p)$) denote the subspace of $M_{\kappa}(\Gamma_0(4p))$ (resp. $S_{\kappa}(\Gamma_0(4p))$), in which each form satisfies Kohnen’s plus space condition.

Let $\Delta(\tau) \in S_{12}(1)$ be the Ramanujan’s Delta function. The famous Lehmer’s conjecture states that the Fourier coefficients of $\Delta(\tau)$ never vanish. Concerning this conjecture, Ono [1] related the algebraicity of Fourier coefficients of weight -10 mock modular form whose shadow is $\Delta(\tau)$ to the vanishing of Fourier coefficients of $\Delta(\tau)$. Generalizing Ono’s results, Boylan [2] related the algebraicity of Fourier coefficients of weight $2-2k$ mock modular forms to the vanishing of Fourier coefficients of their shadows when $\dim S_{2k}(1) = 1$. In this paper we will extend their works to the half-integral weight case. In the following we recall some known facts.

Fact 1. By Shimura correspondence [3, Proposition 1] we have

$$\dim S_{k+\frac{1}{2}}(1) = \dim S_{2k}(1),$$

which implies that

$$\dim S_{k+\frac{1}{2}}(1) = 1 \iff k = 6, 8, 9, 10, 11, 13 \iff 1 - k = -5, -7, -8, -9, -10, -12.$$
Now we assume that \(k \in \{6, 8, 9, 10, 11, 13\} \). For \(\kappa > 2 \) there is an antilinear differential operator \(\xi_{2-\kappa} : H_{2-\kappa}(\Gamma_0(4p)) \to S_\kappa(\Gamma_0(4p)) \) defined by

\[
\xi_{2-\kappa}(f)(\tau) := 2iy^{2-\kappa} \cdot \frac{df}{d\tau}.
\]

Fact 2. For \(k \in \{6, 8, 9, 10, 11, 13\} \), it follows from \([4, \text{Theorem 1.1-(iii)} \text{ and Lemma 4.2-(c)}]\) that

\[
\xi_{\frac{3}{2}-k} : H_{\frac{3}{2}-k}(1) \to S_{k+\frac{3}{2}}(1) \quad \text{is surjective.}
\]

For any \(\kappa \in \mathbb{Z} + \frac{1}{2} \), the Duke-Jenkins basis \([5]\) for \(\mathcal{M}_\kappa := \mathcal{M}_\kappa^1(1) \) is constructed as follows. Let \(2\kappa - 1 = 12\ell_\kappa + k' \) with uniquely determined \(\ell_\kappa \in \mathbb{Z} \) and \(k' \in \{0, 4, 6, 8, 10, 14\} \). If \(A_\kappa \) denotes the maximal order of a non-zero \(f \in \mathcal{M}_\kappa \) at \(i\infty \), then by the Shimura correspondence \([3]\) one has

\[
A_\kappa = \begin{cases}
2\ell_\kappa - (-1)^{\kappa-1/2} & \text{if } \ell_\kappa \text{ is odd}, \\
2\ell_\kappa & \text{otherwise}.
\end{cases}
\]

A basis for \(\mathcal{M}_\kappa^1 \) then consists of functions of the form

\[
f_{\kappa,m}(\tau) = q^{-m} + \sum_{n \in \mathcal{A}_\kappa} a_\kappa(m, n) q^n,
\]

where \(m \geq -A_\kappa \) satisfies \((-1)^{\kappa-3/2} m \equiv 0, 1 \pmod{4} \). Using (1) and (2) we deduce the following facts.

Fact 3. For \(\kappa = \frac{3}{2} - k \) with \(k \in \{6, 8, 9, 10, 11, 13\} \), the maximal order \(A_\kappa \) of a non-zero \(f \in \mathcal{M}_\kappa \) at \(i\infty \) is given by \(A_\kappa = -4 \). Thus for each \(m \geq 4 \) satisfying \((-1)^k m \equiv 0, 1 \pmod{4} \), there exist unique modular forms \(f_{\frac{3}{2}-k,m}(\tau) \in \mathcal{M}_{\frac{3}{2}-k} \) with Fourier development

\[
f_{\frac{3}{2}-k,m}(\tau) = q^{-m} + \sum_{n \geq -3} a_{\frac{3}{2}-k}(m, n) q^n,
\]

which form a basis for the space \(\mathcal{M}_{\frac{3}{2}-k}^1 \).

Fact 4. For \(\kappa = k + \frac{1}{2} \) with \(k \in \{6, 8, 9, 10, 11, 13\} \), the space \(S_\kappa \) is spanned by

\[
f_{k} := f_{\kappa, -\alpha}
\]

where \(\alpha \) is given by

\[
\alpha = \alpha_k = A_\kappa = A_{k+\frac{1}{2}} = \begin{cases}
1, & \text{if } k \text{ is even}, \\
3, & \text{if } k \text{ is odd},
\end{cases}
\]

and \(f_k \) has the form \(q^\alpha + O(q^k) \).

Fact 5. Let \(\kappa = k + \frac{1}{2} \) and \(f(z) \in H_{\kappa}(\Gamma_0(4p)) \) with Fourier expansion \(f(\tau) = \sum_{n \in \mathbb{Z}} c(y/n)n^\frac{\alpha}{2} \) where \(\tau = x + iy \).

For each prime \(l \) with \(\gcd(1, 4p) = 1 \), the \(l^2 \)-th Hecke operator is defined by

\[
f_l T(l^2)(\tau) = \sum_{n \in \mathbb{Z}} \left(c(y/l^2) + \frac{(-1)^k n}{l} \right) \left(l^{k-1} c(y/n) + l^{2k-1} c(l^2 \cdot y/l^2) \right) e^{2\pi i n x}.
\]

Then for each \(\mathcal{M} \in \mathcal{M}_{2-\kappa}(p) \), we obtain from \([6, (2.6)]\) or \([7, (7.2)]\) that for \(\kappa > 2 \),

\[
\xi_{2-\kappa}(\mathcal{M}|T(l^2)) = l^{2\kappa-2} \xi_{2-\kappa}(\mathcal{M}|T(l^2)).
\]

As a corollary of Fact 5, one has that if \(f(z) = \sum_{n \geq 1} a_f(n) q^n \in \mathcal{S}_{k+\frac{1}{2}} \), then

\[
f_{l^{k+\frac{1}{2}} T(l^2)} = \sum_{n \geq 1} \left(a_f(l^2 n) + \frac{(-1)^k n}{l} l^{k-1} a_f(n) + l^{2k-1} a_f(n^2) \right) q^n \in \mathcal{S}_{k+\frac{1}{2}}.
\]
(or see [3, Theorem 1(ii)].)

Let \((V, Q)\) be a non-degenerate rational quadratic space of signature \((b^+, b^-)\) and \(L\) an even lattice with dual \(L'\). Denote the standard basis elements of the group algebra \(\mathbb{C}[L'/L]\) by \(e_\gamma\) for \(\gamma \in L'/L\). Let \(\text{Mp}_2(\mathbb{Z})\) denote the integral metaplectic group, which consists of pairs \((\gamma, \phi)\), where \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z})\) and \(\phi: \mathbb{R} \to \mathbb{C}\) is a holomorphic function with \(\phi(\tau)^2 = c\tau + d\). It is well known that \(\text{Mp}_2(\mathbb{Z})\) is generated by \(S = ((0 \ 1 \ -1 \ 0), \sqrt{7})\) and \(T = ((\frac{1}{2} \ \frac{1}{2}), 1)\). Then there is a unitary representation \(\rho_L\) of the group \(\text{Mp}_2(\mathbb{Z})\) on \(\mathbb{C}[L'/L]\), the so-called Weil representation, which is defined by

\[
\rho_L(T)(e_\gamma) := e(Q(\gamma))e_\gamma,
\]

\[
\rho_L(S)(e_\gamma) := e((b^* - b^+)/\sqrt{|L'/L|}) \sum_{\delta \in L'/L} e(-\gamma, \delta)e_\delta,
\]

where \(e(z) := e^{2\pi iz}\) and \((X, Y) := Q(X + Y) - Q(X) - Q(Y)\) is the associated bilinear form. One has the relations

\[
S^2 = (ST)^3 = Z \quad (Z = ((-1 \ 0 \ -1), i))
\]

from which we note that

\[
\rho_L(Z)e_\gamma = b^* - b^- c_{-\gamma}.
\]

We write \(<\cdot, \cdot>\) for the standard scalar product on \(\mathbb{C}[L'/L]\), i.e.

\[
< \sum_{\gamma \in L'/L} \lambda_\gamma e_\gamma, \sum_{\gamma' \in L'/L} \mu_{\gamma'} e_{\gamma'} > = \sum_{\gamma \in L'/L} \lambda_\gamma \overline{\mu_{\gamma'}}.
\]

For \(\gamma, \delta \in L'/L\) and \((M, \phi) \in \text{Mp}_2(\mathbb{Z})\) the coefficient \(\rho_{\gamma, \delta}(M, \phi)\) of the representation \(\rho_L\) is defined by

\[
\rho_{\gamma, \delta}(M, \phi) = <\rho_L(M, \phi)e_\delta, e_\gamma>.
\]

Following [9], for an integer \(r\) we denote by \(H_{r+1/2, \rho_\ell}\) (resp. \(M_{r+1/2, \rho_\ell}\)), the space of \(\mathbb{C}[L'/L]\)-valued harmonic weak Maass forms (resp. weakly holomorphic modular forms) of weight \(r + 1/2\) and type \(\rho_\ell\).

Let \(L_r\) be the lattice \(2p^r\mathbb{Z}\) of signature \((1, 0)\) (resp. \((0, 1)\)) when \(r\) is even (resp. odd) equipped with the quadratic form \(Q_r(x) = (-1)^r x^2/4p\). Then its dual lattice \(L'_r\) is equal to \(\mathbb{Z}\). For a vector valued modular form \(F = \sum \gamma F_\gamma e_\gamma\), we define a map \(\Phi\) by

\[
\Phi(F)(\tau) := \sum_{\gamma} F_\gamma(4p\tau).
\]

It then follows from [8, Theorem 1] that the map \(\Phi\) defines an isomorphism from \(H_{r+1/2, \rho_\ell}\) to \(\mathbb{H}_{r+1/2}(p)\) since \(\rho_{\ell_r} = 1\).

For a \(\mathbb{C}[L'/L]\)-valued function \(f\) and \((M, \phi) \in \text{Mp}_2(\mathbb{Z})\) we define the Petersson slash operator by

\[
(f|_{r+1/2}(M, \phi))(\tau) = \phi(\tau)^{-2r-1} \rho_L(M, \phi)^{-1} f(M\tau).
\]

Let \(L := L_k\) and \(Q := Q_k\). Following [9] we define the vector valued cuspidal Poincaré series \(P_{\beta, n}^L(\tau)\) as follows:

for each \(\beta \in \mathbb{Z}/2p\mathbb{Z}\) and \(n \in \mathbb{Z} + Q(\beta)\) with \(n > 0\),

\[
P_{\beta, n}^L(\tau) := \frac{1}{2} \sum_{(M, \phi) \in \text{Mp}_2(\mathbb{Z})} \epsilon_\beta(n\tau)|_{\kappa}(M, \phi).
\]

Then we know from [9] that \(P_{\beta, n}^L(\tau)\) belongs to the space \(S_{\kappa, \rho_\ell}\). Let \(\mathcal{D}_k\) denote the set of all integers \(D\) such that \((-1)^k D > 0\) and \(D\) is congruent to a square modulo \(4p\).

Theorem 1.1 ([4, Theorem 1.1]). For an integer \(k > 2\) we let \(\kappa = k + \frac{1}{2}\) and \(L := L_k\). For each \(D \in \mathcal{D}_k\), we define

\[
P_D^{\beta} := \Phi(P_{\beta, \frac{k}{2}}^L),
\]

where \(\beta\) is an integer such that \(D \equiv \beta^2 \pmod{4p}\). Then the following assertions are true.

(i) \(P_D^{\beta} \in S_{\kappa}(p)\) and the definition of \(P_D^{\beta}\) does not depend on the choice of \(\beta\).
(ii) For each \(f = \sum_{n\geq 1} a_f(n)q^n \in \mathcal{S}_\kappa(p) \), we have

\[
(f, c_{k,D}P^n) = a_f(|D|)
\]

where \((\cdot, \cdot)\) denotes the Petersson inner product and

\[
c_{k,D} = \begin{cases}
\frac{(4\pi |D|)^{\kappa-1}}{T(\kappa-1)} \cdot \frac{s(D)}{3}, & \text{if } p = 1 \\
\frac{(4\pi |D|)^{\kappa-1}}{T(\kappa-1)} \cdot \frac{s(D)}{4}, & \text{if } p = 2 \\
\frac{(4\pi |D|)^{\kappa-1}}{T(\kappa-1)} \cdot \frac{s(D)}{6}, & \text{if } p > 2
\end{cases}
\]

with \(s(D) = \begin{cases}
1, & \text{if } p | D, \\
2, & \text{otherwise.}
\end{cases} \)

(iii) The set \(\{ P^n_D \mid D \in \mathcal{D}_k \} \) spans the space \(\mathcal{S}_\kappa(p) \). Moreover, if we let \(t = \dim \mathcal{S}_\kappa(p) \) and \(\{ f_1, f_2, \ldots, f_t \} \) be a basis for \(\mathcal{S}_\kappa(p) \) satisfying \(f_i = q^{|D_i|} + O(q^{|D_i|+1}) \) for some \(D_i \in \mathcal{D}_k \) \((i = 1, \ldots, t) \) and \(0 < |D_1| < |D_2| < \cdots < |D_t| \), then the set

\[
\{ P^n_{D_1}, P^n_{D_2}, \ldots, P^n_{D_t} \}
\]

forms a basis for \(\mathcal{S}_\kappa(p) \).

(iv) Let \(I \) be a nonempty finite subset of \(\mathbb{N} \). Then the following two conditions are equivalent.

(a) \(\sum_{\alpha \in I} \alpha c(D^n_{P_{\alpha}}(\tau)) = 0 \) for some \(\alpha \in \mathbb{C} \) and \(D_{\alpha} \in \mathcal{D}_k \).

(b) There exists \(g \in M_{2-k}(\mathbb{R}) \) with the principal part \(\sum_{\alpha \in I} \alpha |D_{\alpha}|^{1-k} q^{-|D_{\alpha}|} \).

Remark 1.2. Let \(p = 1 \) and take

\[
D_k = \begin{cases}
1, & \text{if } k \text{ is even} \\
-3, & \text{if } k \text{ is odd.}
\end{cases}
\]

Then in Theorem 1.1 one can choose \(\beta = 1 \) and

\[
P^n_{\beta} := \phi(P^n_{\frac{1}{2}, \frac{1}{2}}).
\]

We let \(\tilde{\Gamma}_\infty := \langle T \rangle \). We define for \(s \in \mathbb{C} \) and \(y \in \mathbb{R} - \{ 0 \} : \)

\[
\mathcal{M}_s(y) = y^{-(2-\kappa)/2} M_{-(2-\kappa)/2, s-1/2}(y) \quad (y > 0),
\]

\[
\mathcal{W}_s(y) = |y|^{-(2-\kappa)/2} W_{\frac{s-\kappa}{2}, \frac{s-1}{2}}(|y|)
\]

where \(M_{\kappa, \mu}(z) \) and \(W_{\kappa, \mu}(z) \) denote the usual Whittaker functions. Now we take \(\kappa = k + 1/2 > 2, L := L_{1-k}, \) and \(Q := Q_{1-k} \). For each \(\beta \in \mathbb{Z}/2p\mathbb{Z} \) and \(m \in \mathbb{Z} + Q(\beta) \) with \(m < 0 \), modifying the Poincaré series in [9, (1.35)] we define the vector valued Maass Poincaré series \(F_{\beta,m}^L \) of index \((\beta, m) \) by

\[
F_{\beta,m}^L(\tau, s) := \frac{1}{2\Gamma(2s)} \sum_{(M, \phi) \in \tilde{\Gamma}_{\infty} \setminus \text{Mp}_L(Z)} [\mathcal{M}_s(4\pi |m|y) \epsilon_\beta(mx)] |2^{1-s}(M, \phi)|^{1-s}.
\]

where \(\tau = x + iy \in \mathbb{H} \) and \(s = \sigma + it \in \mathbb{C} \) with \(\sigma > 1 \). Indeed, since \(\mathcal{M}_s(4\pi |m|y) \epsilon_\beta(mx) \) is invariant under slash operator \(|2-\kappa|_T \), the Maass Poincaré series is well defined. This series has desirable properties as follows. As in Section 1.3 in [9] it converges normally for \(\tau \in \mathbb{H} \) and \(s = \sigma + it \in \mathbb{C} \) with \(\sigma > 1 \) and hence defines a \(\text{Mp}_L(Z) \) - invariant function on \(\mathbb{H} \) under the slash operator \(|2-\kappa|_T \). Moreover, \(F_{\beta,m}^L(\tau, s) \) is an eigenfunction of \(\Delta_{2-k} \) with an eigenvalue \(s(1-s) + \kappa(\kappa-2)/4 \). Since \(\epsilon_\beta(\tau)|2-k, Z = \epsilon_\beta \) by (3), the invariance of \(F_{\beta,m}^L \) under the action of \(Z \) implies \(F_{\beta,m}^L = F_{\beta,m}^L \).

Let \(\kappa = k + 1 \) and \(L = L_{1-k} \) with \(k \) an integer > 2. For each \(\beta \in \mathbb{Z}/2p\mathbb{Z} \) and \(m \in \mathbb{Z} + Q(\beta) \) with \(m < 0 \), we obtain from [4, Corollary 1.5] that \(F_{\beta,m}^L(\tau, \frac{\kappa}{2}) \) belongs to the space \(H_{2-k,\rho_L} \).

Let

\[
Q = Q(k; z) := \phi \left(F_{\beta,m}^L \left(\tau, \frac{\kappa}{2} \right) \right) = Q^+ + Q^-
\]
where \(Q^+ = Q^+(k; z) \) is the holomorphic part of \(Q(k; z) \) and \(Q^- = Q^-(k; z) \) is the nonholomorphic part of \(Q(k; z) \). Let \(Q(k; z) \) have the Fourier development as follows:

\[
Q(k; z) = 2q^{-\alpha} + c_0^+(0) + \sum_{\beta} c_0^+(n) q^n + \sum_{\beta} c_0^-(n) \Gamma(\kappa - 1, 4\pi ny) q^{-n}.
\]

Now we are ready to state our main results.

Theorem 1.3. With the same notations as above the following assertions are true.

1. Let

\[
f_k |_{k+\frac{1}{2}} T(I^2) = \lambda_k (I^2) f_k
\]

for some \(\lambda_k (I^2) \in \mathbb{C} \). Then one has

\[
\lambda_k (I^2) = a_k (I^2 \alpha) + \left(\frac{(-1)^{k} \alpha}{l} \right) t^{k-1}.
\]

2. We have

\[
Q |_{\frac{1}{2} - k} T(I^2) - l^{1-2k} \lambda_k (I^2) Q = Q^+ |_{\frac{1}{2} - k} T(I^2) - l^{1-2k} \lambda_k (I^2) Q^+ \in \mathbb{M}_{\frac{1}{2} - k}^1.
\]

Theorem 1.4. For an odd prime \(l \), the following assertions are true.

1. We have

\[
c_0^+(I^2 \beta_0) \in \mathbb{Z}[c_0^0(\beta_0)] \subseteq \mathbb{Q}(c_0^0(\beta_0)).
\]

2. Assume that \(c_0^0(\beta_0) \) is irrational. Then

\[
a_k (I^2 \alpha_k) = t^{k-1} \left(\frac{(-1)^{k-1} \beta_k}{l} - \frac{(-1)^{k} \alpha_k}{l} \right) \text{ if and only if } c_0^+(I^2 \beta_k) \in \mathbb{Q}.
\]

3. Assume that \(\left(\frac{-\beta_k}{l} \right) = \left(\frac{\alpha_k}{l} \right) \) and \(c_0^0(\beta_0) \) is irrational. Then

\[
a_k (I^2 \alpha_k) = 0 \text{ if and only if } c_0^+(I^2 \beta_k) \in \mathbb{Q}.
\]

Remark 1.5. For simplicity, we dealt with the case \(p = 1 \) in our main results. But we remark that they can be extended to higher level cases whenever \(\dim \mathcal{S}_{k+rac{1}{2}} (p) = 1 \).

2 Proof of Theorem 1.3

First we are in need of two lemmas and one more fact.

Lemma 2.1 (Lemma 4.1). Let \(\kappa = k + \frac{1}{2} \) for an integer \(k > 2 \) and let \(D \in \mathbb{D}_k \). Then the following assertions are true.

(a) For each \(G \in H_{2-\kappa, D_{k+rac{1}{2}}} \), we have

\[
(4p)^{\kappa-1} \Phi \circ \xi_{2-\kappa} (G) = \xi_{2-\kappa} \circ \Phi (G).
\]

(b) For each \(f = \sum_{n=1} \Phi (n) q^n \in \mathcal{S}_\kappa (p) \),

\[
(f, (4p)^{\kappa-1} \Phi \xi_{2-\kappa} (F^{l-\frac{1}{2}}_{\beta, \frac{-\alpha}{\pi}} (\tau, \frac{\kappa}{2}))) = \begin{cases} \frac{3}{4 \pi (D)} \cdot \Phi (|D|), & \text{if } \frac{p}{p} = 1 \\ \frac{3}{4 \pi (D)} \cdot \Phi (|D|), & \text{if } \frac{p}{p} = 2 \\ \frac{6}{4 \pi (D)} \cdot \Phi (|D|), & \text{if } \frac{p}{p} > 2. \end{cases}
\]
Lemma 2.2 ([4, Lemma 4.2]). With the same notations as in Lemma 2.1, we have the following assertions.

(a) For a vector valued function $h = h_\beta(\tau) e_\beta$, one has

$$
\xi_{2,-\kappa}(h|_{\kappa=\kappa)}^{|M, \phi}) = (\xi_{2,-\kappa}(h)|_{\kappa)}^{|M, \phi}).
$$

(b) $\xi_{2,-\kappa}(1, 4\pi ny) = -(4\pi n)^{\kappa-1} e^{-4\pi ny}$.

(c) Let $m = -\frac{\left|\tau\right|}{\pi}$. Then one has

$$
\xi_{2,-\kappa}(F_{\beta,m}^{|\kappa-\kappa/2}) = \left(\frac{(4\pi |m|)^{\kappa-1}}{\Gamma(\kappa-1)} p_{\beta,|m|}^{|\tau})\right).
$$

Fact 6. Let $\kappa = k + \frac{1}{2}$.

(1) It follows from Lemmas 2.1 and 2.2 that

$$
\Phi\left(\xi_{2,-\kappa}(F_{\kappa}^{|\kappa-\kappa/2})\right) = \Phi\left(\frac{(\pi |D_k|^\kappa-1}{\Gamma(\kappa-1)} p_{\kappa}^{|\kappa/2})\right) = \left(\frac{(\pi |D_k|^\kappa-1}{\Gamma(\kappa-1)} P_{D_k}^{|\tau})\in \mathbb{S}_{\kappa+\frac{1}{2}}.
$$

(2) We obtain from Theorem 1.1-(ii) that

$$
(f_k, c_{k,D_k} P_{D_k}^{|}) = a_{f_k}(|D_k|) = 1
$$

where $c_{k,D_k} = \frac{(4\pi |D_k|)^{\kappa-1}}{\Gamma(\kappa-1)} \in \mathbb{R}$.

For $k \in \{6, 8, 9, 10, 11, 13\}$, it follows from Fact 3, Fact 4, and Theorem 1.1-(iii), (iv) that $P_{D_k}^{|}$ does not vanish and

$$
P_{D_k}^{|} = c_k f_k
$$

for some $c_k \in \mathbb{C}^\times$. Thus one has from Fact 6 (2) that

$$
1 = (f_k, c_{k,D_k} c_k f_k) = \overline{c_k c_{k,D_k} ||f_k||^2,
$$

which implies

$$
c_k = c_k|^{-1} ||f_k||^{-2}.
$$

We compute that

$$
\xi_{2,-\kappa}(Q(k,z)) = \xi_{2,-\kappa}(\Phi\left(F_{\kappa}^{|\kappa-\kappa/2})\right))
$$

by Lemma 2.1-(a)

$$
= \left(4^{\kappa-1} \frac{(4\pi |D_k|)^{\kappa-1}}{\Gamma(\kappa-1)} P_{D_k}^{|(|\tau})\right)
$$

by Fact 6 (1)

$$
= \left(4^{\kappa-1} \frac{(4\pi |D_k|)^{\kappa-1}}{\Gamma(\kappa-1)} c_{k,D_k}||f_k||^{-2} f_k
$$

$$
= 3 ||f_k||^{-2} f_k.
$$

Since

$$
f_k|_{\kappa+\frac{1}{2}} T(|\tau|) = \sum_{n=0}^{\infty} \left(a_{f_k}(i^2 n) + \left(\frac{(-1)^k n}{l} \right) t^{k-1} a_{f_k}(n) + t^{2k-1} a_{f_k}(n/l^2)\right) q^n
$$

$$
= \lambda_k(|\tau|) f_k,
$$

one has

$$
\lambda_k(|\tau|) = a_{f_k}(i^2) + \left(\frac{(-1)^k}{l} \right) t^{k-1},
$$
Indeed, we observe that which combined with (8) yields the second assertion. Thus we have which implies that

\[
\zeta_2(4) = \sum_{n \geq 0, 1} (4\pi n)^{\zeta - 1} c Q(n) q^n,
\]

which proves the first assertion. Hence for all \(n \geq 1 \) with \((-1)^k n \equiv 0, 1 \pmod{4}\)

\[
\left(a_k(T^2) + \left(\frac{-1}{4} \right) k^{n} \right) a_k(n) = a_k(T^2 n) + \left(\frac{-1}{4} \right) k^{n} a_k(n) + \left(\frac{-1}{4} \right) k^{n-1} a_k(n/4^k).
\]

It follows from (5) that

\[
3 || f_k ||^{-2} f_k(z) = \xi_{2-k}(Q(k; z)) - \sum_{n \equiv 0, 1} (4\pi n)^{\zeta - 1} c Q(n) q^n,
\]

which implies that

\[
c Q(n) = -3 || f_k ||^{-2} \cdot (4\pi n)^{\zeta - 1} \cdot a_k(n).
\]

Now we put \(d_k := -3 || f_k ||^{-2} \cdot (4\pi)^{\zeta - 1} \). We obtain that for all positive integers \(n \) with \((-1)^k n \equiv 0, 1 \pmod{4}\),

\[
\begin{align*}
n^{\zeta - 1} (c Q(n^2)(n^2)^{\zeta - 1} + \left(\frac{-1}{4} \right)^k n \Gamma k c Q(n) n^{\zeta - 1}) \\
= n^{\zeta - 1} d_k \left(a_k(n^2) + a_k(n^2)^{\zeta - 1} \cdot \left(\frac{-1}{4} \right)^k n, n^{\zeta - 1} \cdot a_k(n) \right) \quad \text{by (7)} \\
= n^{\zeta - 1} d_k \left(a_k(n^2) + \left(\frac{-1}{4} \right)^k n \right) a_k(n) \quad \text{by (6)} \\
= \lambda_k(n^2) c Q(n).
\end{align*}
\]

Thus we have

\[
\begin{align*}
Q^{-1} \left[\zeta_{2-k}(T^2) \right] = & \sum_{n \in \mathbb{Z}} \left(c Q(n^2) + \left(\frac{-1}{4} \right)^k n \Gamma k c Q(n) + 1^{\zeta - 1} \cdot c Q(n^2)^{\zeta - 1} \right) \Gamma(\zeta - 1, 4\pi n) q^n \\
= & (1^{\zeta - 1} \sum_{n \in \mathbb{Z}} c Q(n^2) d_k(n) + \left(\frac{-1}{4} \right)^k n \Gamma k c Q(n) + c Q(n^2)) \Gamma(\zeta - 1, 4\pi n) q^n \\
= & (1^{\zeta - 1} \sum_{n \in \mathbb{Z}} d_k(n)^{\zeta - 1} \left(c Q(n^2)(n^2)^{\zeta - 1} \cdot a_k(n) + a_k(n^2)^{\zeta - 1} \cdot \left(\frac{-1}{4} \right)^k n \right) \Gamma(\zeta - 1, 4\pi n) q^n \\
= & \left(1^{\zeta - 1} \sum_{n \in \mathbb{Z}} d_k(n)^{\zeta - 1} \left(a_k(n^2) \cdot \left(\frac{-1}{4} \right)^k n \right) a_k(n) \right) \Gamma(\zeta - 1, 4\pi n) q^n \\
= & (1^{\zeta - 1} \sum_{n \in \mathbb{Z}} \lambda_k(n^2) c Q(n)) \Gamma(\zeta - 1, 4\pi n) q^n \quad \text{since } f_k \left[T_{k^{\zeta - 1}}(T^2) \right] = \lambda_k(n^2) f_k \\
= & (1^{\zeta - 1} \lambda_k(n^2)) Q^{-1} - \lambda_k(n^2) Q^{-1}.
\end{align*}
\]

We obtain that

\[
\begin{align*}
1^{\zeta - 1} \xi_{2-k}(Q_{2-k}(T^2)) &= \left(\xi_{2-k}(Q) \right) \lambda_k(T^2) \quad \text{by Fact 5} \\
= & (1^{\zeta - 1} \sum_{n \in \mathbb{Z}} c Q(n^2) d_k(n) + \left(\frac{-1}{4} \right)^k n \Gamma k c Q(n) + c Q(n^2)) \Gamma(\zeta - 1, 4\pi n) q^n \\
= & (1^{\zeta - 1} \sum_{n \in \mathbb{Z}} d_k(n)^{\zeta - 1} \left(c Q(n^2)(n^2)^{\zeta - 1} \cdot a_k(n) + a_k(n^2)^{\zeta - 1} \cdot \left(\frac{-1}{4} \right)^k n \right) \Gamma(\zeta - 1, 4\pi n) q^n \\
= & (1^{\zeta - 1} \sum_{n \in \mathbb{Z}} d_k(n)^{\zeta - 1} \left(a_k(n^2) \cdot \left(\frac{-1}{4} \right)^k n \right) a_k(n) \right) \Gamma(\zeta - 1, 4\pi n) q^n \\
= & (1^{\zeta - 1} \sum_{n \in \mathbb{Z}} \lambda_k(n^2) c Q(n)) \Gamma(\zeta - 1, 4\pi n) q^n \quad \text{since } f_k \left[T_{k^{\zeta - 1}}(T^2) \right] = \lambda_k(n^2) f_k \\
= & (1^{\zeta - 1} \lambda_k(n^2)) Q^{-1} - \lambda_k(n^2) Q^{-1}.
\end{align*}
\]

Indeed, we observe that

\[
\lambda_k(n^2) = a_k(n^2) + \left(\frac{-1}{4} \right)^k n \Gamma k a_k(n) \in \mathbb{Z}.
\]

Thus we have

\[
\begin{align*}
1^{\zeta - 1} \xi_{2-k}(Q_{2-k}(T^2)) &= \lambda_k(n^2) Q \\
\lambda_k(T^2) &= \lambda_k(n^2) Q \quad \text{since } \lambda_k(n^2) \in \mathbb{R}.
\end{align*}
\]

which combined with (8) yields the second assertion.
3 Proof of Theorem 1.4

We observe that

\[Q|_{\frac{1}{2} - k} T(I^2) - l^{1 - 2k} \lambda_k(I^2) Q = Q'|_{\frac{1}{2} - k} T(I^2) - l^{1 - 2k} \lambda_k(I^2) Q^* \]

\[= \left(2q^{-\alpha} + c_0^\beta(0) + \sum_{n \equiv 1 \pmod{4}} c_0^\beta(n) q^n \right) |_{\frac{1}{2} - k} T(I^2) \]

\[- l^{1 - 2k} \lambda_k(I^2) \left(2q^{-\alpha} + c_0^\beta(0) + \sum_{n \equiv 1 \pmod{4}} c_0^\beta(n) q^n \right) \]

\[= 2l^{1 - 2k} q^{-\alpha} t^2 + 2 \left(\left(\frac{-1}{k} \right) \frac{t}{l} - l^{1 - 2k} \lambda_k(I^2) \right) q^{-\alpha} + c_0^\beta(0)(1 + l^{1 - 2k} - l^{1 - 2k} \lambda_k(I^2)) \]

\[+ \sum_{n \equiv 1 \pmod{4}} c_0^\beta(n) q^n \left(\left(\frac{-1}{k} \right) \frac{n}{l} - l^{1 - 2k} \lambda_k(I^2) c_0^\beta(n) \right) q^n \]

\[= 2l^{1 - 2k} f_{\frac{1}{2} - k, \alpha, t}Q^* \text{ since } -\alpha \geq -3. \]

So we find that

\[2f_{\frac{1}{2} - k, \alpha, t} = l^{2k - 1} Q^* |_{\frac{1}{2} - k} T(I^2) - \lambda_k(I^2) Q^* \]

has integral coefficients and for all positive integers \(n \) with \((-1)^{k-1} n \equiv 0, 1 \pmod{4}, \)

\[l^{2k - 1} c_0^\beta(I^2 n) + \left(\frac{(-1)^{k-1} n}{l} \right) l^{k-1} c_0^\beta(n) + c_0^\beta(n/l^2) - \lambda_k(I^2) c_0^\beta(n) \]

\[= c_0^\beta(n) \left(\left(\frac{-1}{k} \right) \frac{n}{l} - l^{k-1} - a_0^\beta(I^2 n) \right) + l^{2k-1} c_0^\beta(I^2 n) + c_0^\beta(n/l^2) \in 2\mathbb{Z}. \]

Then for \(n = \beta_k \) with

\[\beta_k = \begin{cases} 3, & k \text{ even,} \\ 1, & k \text{ odd,} \end{cases} \]

we obtain that

\[c_0^\beta(\beta_k) \left(\left(\frac{-1}{k} \frac{\beta_k}{l} \right) - \left(\frac{-1}{k} \frac{\alpha}{l} \right) \right) l^{k-1} - a_0^\beta(I^2 \alpha) \right) + l^{2k-1} c_0^\beta(I^2 \beta_k) \in 2\mathbb{Z}. \]

As a consequence of the above identity we get the assertions.

Acknowledgement: We would like to thank KIAS (Korea Institute for Advanced Study) for its hospitality. Choi was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education) (No. 2017R1D1A1A0900691).

Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2018R1D1A1B07045618 and 2016R1A5A1008055).

References

