On further refinements for Young inequalities

Abstract: In this paper sharp results on operator Young’s inequality are obtained. We first obtain sharp multiplicative refinements and reverses for the operator Young’s inequality. Secondly, we give an additive result, which improves a well-known inequality due to Tominaga. We also provide some estimates for the difference $A^{1/2} \left(A^{-1/2} BA^{-1/2} \right)^{\nu} A^{1/2} - \{(1 - \nu)A + \nu B\}$ for $\nu \in [0, 1]$.

Keywords: Operator inequality, Young inequality, Weighted arithmetic and geometric mean, Positive operator

MSC: 47A63, 26D07, 47A60

1 Introduction

This note lies in the scope of operator inequalities. We assume that the reader is familiar with the continuous functional calculus and the Kubo-Ando theory [1].

It is to be understood throughout the paper that the capital letters present bounded linear operators acting on a Hilbert space \mathcal{H}. A is positive (written $A \geq 0$) in case $\langle Ax, x \rangle \geq 0$ for all $x \in \mathcal{H}$ also an operator A is said to be strictly positive (denoted by $A > 0$) if A is positive and invertible. If A and B are self-adjoint, we write $B \geq A$ in case $B - A \geq 0$. As usual, by I we denote the identity operator.

The weighted arithmetic mean ∇_ν, geometric mean $\|_\nu$, and harmonic mean $!_\nu$, for $\nu \in [0, 1]$ and $a, b > 0$, are defined as follows:

$$a \nabla_\nu b = (1 - \nu) a + \nu b, \quad a\|_\nu b = a^{-\nu} b^\nu, \quad a!_\nu b = \left((1 - \nu) a^{-1} + \nu b^{-1} \right)^{-1}.$$

If $\nu = \frac{1}{2}$, we denote the arithmetic, geometric, and harmonic means, respectively, by ∇, $\|$ and $!$, for the simplicity. Like the scalar cases, the operator arithmetic mean, the operator geometric mean, and the operator harmonic mean for $A, B > 0$ can be stated in the following form:

$$A \nabla_\nu B = (1 - \nu) A + \nu B, \quad A\|_\nu B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} BA^{-\frac{1}{2}} \right)^{\nu} A^{\frac{1}{2}}, \quad A!_\nu B = \left((1 - \nu) A^{-1} + \nu B^{-1} \right)^{-1}.$$

The celebrated arithmetic-geometric-harmonic-mean inequalities for scalars assert that if $a, b > 0$, then

$$a!_\nu b \leq a\|_\nu b \leq a \nabla_\nu b. \quad (1)$$

Generalization of the inequalities (1) to operators can be seen as follows: If $A, B > 0$, then

$$A!_\nu B \leq A\|_\nu B \leq A \nabla_\nu B.$$

The last inequality above is called the operator Young inequality. During the past years, several refinements and reverses were given for Young’s inequality, see for example [2–4].
Zuo et al. showed in [5, Theorem 7] that the following inequality holds:

\[K(h, 2)^t A_{\|B} B \leq A_{\|\nu} B, \quad r = \min \{ v, 1 - v \} , \quad K(h, 2) = \frac{(h + 1)^2}{4h}, \quad h = \frac{M}{m} \]

whenever \(0 < m'/I \leq B \leq m/I < A \leq M'/I\) or \(0 < m'/I \leq A \leq m/I < B \leq M'/I\). As the authors mentioned in [5], the inequality (2) improves the following refinement of Young’s inequality involving Specht’s ratio

\[S(t) = \frac{t^r}{e \log t^{r/1}} \quad (t > 0, t \neq 1) \]

(see [6, Theorem 2]),

\[S(h') A_{\|B} B \leq A_{\|\nu} B. \]

Under the above assumptions, Dragomir proved in [7, Corollary 1] that

\[A_{\|\nu} B \leq \exp\left[\frac{v(1-v)}{2} (h - 1)^2 \right] A_{\|B}. \]

We remark that there is no relationship between two constants \(K(h, 2)^t\) and \(\exp\left[\frac{v(1-v)}{2} (h - 1)^2 \right]\) in general.

In [3, 8] we proved some sharp multiplicative reverses of Young’s inequality. Moreover, we shall show some additive-type refinements and reverses of Young’s inequality.

2 Main results

In our previous work [8], we gave new sharp inequalities for reverse Young inequalities. In this section we firstly give new sharp inequalities for Young inequalities, as limited cases in the first inequalities both (i) and (ii) of the following theorem.

Theorem 2.1. Let \(A, B > 0\) such that \(sA \leq B \leq tA\) for some scalars \(0 < s \leq t\) and let \(f_v(x) \equiv \frac{(1-v) + vx}{x^v} \) for \(x > 0\), and \(v \in [0, 1]\).

(i) If \(t \leq 1\), then \(f_v(t) A_{\|B} B \leq A_{\|\nu} B \leq f_v(s) A_{\|B} B\).

(ii) If \(s \geq 1\), then \(f_v(s) A_{\|B} B \leq A_{\|\nu} B \leq f_v(t) A_{\|B} B\).

Proof. Since \(f_v(x) = (1-v)/(x-1)x^{-v-1}\), \(f_v(x)\) is monotone decreasing for \(0 < x \leq 1\) and monotone increasing for \(x \geq 1\).

(i) For the case \(0 < s \leq x \leq t \leq 1\), we have \(f_v(t) \leq f_v(x) \leq f_v(s)\), which implies \(f_v(t) A_{\|B} B \leq A_{\|\nu} B \leq f_v(s) A_{\|B} B\) by the standard functional calculus.

(ii) For the case \(1 \leq s \leq x \leq t\), we have \(f_v(s) \leq f_v(x) \leq f_v(t)\) which implies \(f_v(s) A_{\|B} B \leq A_{\|\nu} B \leq f_v(t) A_{\|B} B\) by the standard functional calculus.

Remark 2.2. It is worth emphasizing that each assertion in Theorem 2.1 implies the other one. For instance, assume that the assertion (ii) holds, i.e.,

\[f_v(s) \leq f_v(x) \leq f_v(t), \quad 1 \leq s \leq x \leq t. \]

Let \(t \leq 1\), then \(1 \leq \frac{1}{t} \leq \frac{1}{s} \leq \frac{1}{x}\). Hence (3) ensures that

\[f_v\left(\frac{1}{t}\right) \leq f_v\left(\frac{1}{x}\right) \leq f_v\left(\frac{1}{s}\right). \]

So

\[\frac{(1-v)t + v}{t^{1-v}} \leq \frac{(1-v)x + v}{x^{1-v}} \leq \frac{(1-v)s + v}{s^{1-v}}. \]
Now, by replacing v by $1 - v$ we get
\[
\frac{(1 - v) + vt}{t^r} \leq \frac{(1 - v) + vx}{x^r} \leq \frac{(1 - v) + vs}{s^r}
\]
which means
\[
f_r(t) \leq f_r(x) \leq f_r(s), \quad 0 < s \leq x \leq t \leq 1.
\]
In the same spirit, we can derive (ii) from (i).

Corollary 2.3. Let $A, B > 0$, $m, m', M, M' > 0$, and $v \in [0, 1]$.

(i) If $0 < m'I \leq A \leq mI \leq B \leq M'I$, then
\[
\frac{m'\nabla_v M}{m'\|v\| M} A \|v\| B \leq A \nabla_v B \leq \frac{m\nabla_v M'}{m\|v\| M'} A \|v\| B.
\]
\[
(4)
\]

(ii) If $0 < m'I \leq B \leq mI \leq A \leq M'I$, then
\[
\frac{M\nabla_v m}{M\|v\| m} A \|v\| B \leq A \nabla_v B \leq \frac{M'\nabla_v m'}{M'\|v\| m'} A \|v\| B.
\]
\[
(5)
\]

Proof. We use again the function $f_r(x) = \frac{1 - x + vx}{t^r}$ in this proof.

The condition (i) is equivalent to $\frac{M'}{m'} I \leq A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq \frac{mI}{M} I$, so that we get $f_r\left(\frac{M'}{m'} I\right) A \|v\| B \leq A \nabla_v B \leq f_r\left(\frac{mI}{M} I\right) A \|v\| B$ by putting $s = \frac{M'}{m'} I$ and $t = \frac{mI}{M} I$ in (ii) of Theorem 2.1.

Similarly, the condition (ii) is equivalent to $\frac{mI}{M} I \leq A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq \frac{M'}{m'} I$, so that we get $f_r\left(\frac{mI}{M} I\right) A \|v\| B \leq A \nabla_v B \leq f_r\left(\frac{M'}{m'} I\right) A \|v\| B$ by putting $s = \frac{M'}{m'} I$ and $t = \frac{mI}{M} I$ in (i) of Theorem 2.1.

Note that the second inequalities in both (i) and (ii) of Theorem 2.1 and Corollary 2.3 are special cases of [8, Theorem A].

Remark 2.4. It is remarkable that the inequalities $f_r(t) \leq f_r(x) \leq f_r(s)$ $(0 < s \leq x \leq t \leq 1)$ given in the proof of Theorem 2.1 are sharp, since the function $f_r(x)$ for $s \leq x \leq t$ is continuous. So, all results given from Theorem 2.1 are similarly sharp. As a matter of fact, let $A = MI$ and $B = mI$, then from LHS of (5), we infer
\[
A \nabla_v B = (M \nabla_v, m) I \quad \text{and} \quad A \|v\| B = (M \|v\|, m) I.
\]
Consequently,
\[
\frac{M \nabla_v m}{M \|v\| m} A \|v\| B = A \nabla_v B.
\]
To see that the constant $\frac{M \nabla_v M}{m \|v\| M}$ in the LHS of (4) cannot be improved, we consider $A = mI$ and $B = MI$, then
\[
\frac{m \nabla_v M}{m \|v\| M} A \|v\| B = A \nabla_v B.
\]
By replacing A, B by A^{-1}, B^{-1}, respectively, the refinement and reverse of non-commutative geometric-harmonic mean inequality can be obtained as follows:

Corollary 2.5. Let $A, B > 0$, $m, m', M, M' > 0$, and $v \in [0, 1]$.

(i) If $0 < m'I \leq A \leq mI \leq B \leq M'I$, then
\[
\frac{m'I M'}{m'I \|v\| M'} A \|v\| B \leq A \|v\| B \leq \frac{mI M}{mI \|v\| M} A \|v\| B.
\]
\[
(6)
\]

(ii) If $0 < m'I \leq B \leq mI \leq A \leq M'I$, then
\[
\frac{M'I m'}{M'I \|v\| m'} A \|v\| B \leq A \|v\| B \leq \frac{M m}{M \|v\| m} A \|v\| B.
\]
\[
(7)
\]
Now, we give a new sharp reverse inequality for Young’s inequality as an additive-type in the following.
Theorem 2.6. Let \(A, B > 0 \) such that \(sA \leq B \leq tA \) for some scalars \(0 < s \leq t, \) and \(v \in [0, 1]. \) Then
\[
A^v B - A^\parallel v B \leq \max \{ g_v(s), g_v(t) \} A
\]
where \(g_v(x) \equiv (1 - v) + vx - x^v \) for \(s \leq x \leq t. \)

Proof. Straightforward differentiation shows that \(g_v''(x) = v(1 - v)x^{v-2} \geq 0 \) and \(g_v(x) \) is continuous on the interval \([s, t]\), so
\[
g_v(x) \leq \max \{ g_v(s), g_v(t) \}.
\]
Therefore, by applying similar arguments as in the proof of Theorem 2.1, we reach the desired inequality (6). This completes the proof of theorem.

Corollary 2.7. Let \(A, B > 0 \) such that \(ml \leq A, B \leq MI \) for some scalars \(0 < m < M. \) Then for \(v \in [0, 1], \)
\[
A^v B - A^\parallel v B \leq \xi A
\]
where \(\xi = \max \left\{ \frac{1}{m} (M^{\parallel v} m - m^{\parallel v} m), \frac{1}{m} (m^{\parallel v} M - m^{\parallel v} M) \right\}. \)

Remark 2.8. We claim that if \(A, B > 0 \) such that \(ml \leq A, B \leq MI \) for some scalars \(0 < m < M \) with \(h = \frac{M}{m} \) and \(v \in [0, 1], \) then
\[
A^v B - A^\parallel v B \leq \max \left\{ g_v(h), g_v\left(\frac{1}{h} \right) \right\} A \leq L(1, h) \log S(h) A
\]
holds, where \(L(x, y) = \frac{y-x}{\log y - \log x} (x < y) \) is the logarithmic mean and the term \(S(h) \) refers to the Specht’s ratio.
Indeed, we have the inequalities
\[
(1 - v) + vh - h^v \leq L(1, h) \log S(h), \quad (1 - v) + v \frac{1}{h} - h^{-v} \leq L(1, h) \log S(h),
\]
which were originally proved in [9, Lemma 3.2], thanks to \(S(h) = S\left(\frac{1}{h} \right) \) and \(L(1, h) = L(1, \frac{1}{h}) \). Therefore, our result, Theorem 2.6, improves the well-known result by Tominaga [9, Theorem 3.1],
\[
A^v B - A^\parallel v B \leq L(1, h) \log S(h) A.
\]
Since \(g_v(x) \) is convex, we can not obtain a general result on the lower bound for \(A^v B - A^\parallel v B. \) However, if we impose the conditions, we can obtain new sharp inequalities for Young inequalities as an additive-type in the first inequalities both (i) and (ii) in the following proposition. (At the same time, of course, we also obtain the upper bounds straightforwardly.)

Proposition 2.9. Let \(A, B > 0 \) such that \(sA \leq B \leq tA \) for some scalars \(0 < s \leq t, v \in [0, 1], \) and \(g_v \) is defined as in Theorem 2.6.
(i) If \(t \leq 1, \) then \(g_v(t) A \leq A^v B - A^\parallel v B \leq g_v(s) A. \)
(ii) If \(s \geq 1, \) then \(g_v(s) A \leq A^v B - A^\parallel v B \leq g_v(t) A. \)

Proof. It follows from the fact that \(g_v(x) \) is monotone decreasing for \(0 < x \leq 1 \) and monotone increasing for \(x \geq 1. \)

Corollary 2.10. Let \(A, B > 0, m, m', M, M' > 0, \) and \(v \in [0, 1]. \)
(i) If \(0 < m' l \leq A \leq ml \leq B \leq M', \) then
\[
\frac{1}{m} (m^{\parallel v} M - m^{\parallel v} M) A \leq A^v B - A^\parallel v B \leq \frac{1}{m'} (m'^{\parallel v} M' - m'^{\parallel v} M') A.
\]
(ii) If \(0 < m' I \leq B \leq ml \leq A \leq M'I, \) then
\[
\frac{1}{M} (M^{\parallel v} m - M^{\parallel v} m) A \leq A^v B - A^\parallel v B \leq \frac{1}{M'} (M'^{\parallel v} m' - M'^{\parallel v} m') A.
\]
In the following we use the notations ∇_v and h_v to distinguish from the operator means ∇_v and h_v:

$$A \nabla_v B = (1 - v) A + v B, \quad A_{h_v} B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^{v} A^{\frac{1}{2}}$$

for $v \notin [0, 1]$. Notice that, since $A, B > 0$, the expressions $A \nabla_v B$ and $A_{h_v} B$ are also well-defined.

Remark 2.11. It is known (and easy to show) that for any $A, B > 0$,

$$A \nabla_v B \preceq A_{h_v} B, \quad \text{for } v \notin [0, 1].$$

Assume $g_v(x)$ is defined as in Theorem 2.6. By an elementary computation we have

$$g_v(x) > 0 \text{ for } v \notin [0, 1] \text{ and } 0 < x \leq 1,
\quad g_v(x) < 0 \text{ for } v \notin [0, 1] \text{ and } x > 1.$$

Now, in the same way as above we have also for any $v \notin [0, 1]$:

(i) If $0 < m'I \leq A \leq mI \leq MI \leq B \leq M'I$, then

$$\frac{1}{m'} \left(m' h_v M' - m' \nabla_v M' \right) A \preceq A_{h_v} B - A \nabla_v B \preceq \frac{1}{m} \left(m h_v M - m \nabla_v M \right) A.$$

On account of assumptions, we also infer

$$(m' h_v M' - m' \nabla_v M') I \preceq A_{h_v} B - A \nabla_v B \preceq (m h_v M - m \nabla_v M) I.$$

(ii) If $0 < m'I \leq B \leq mI \leq MI \leq A \leq M'I$, then

$$\frac{1}{M} \left(M h_v m - M \nabla_v m \right) A \preceq A_{h_v} B - A \nabla_v B \preceq \frac{1}{M'} \left(M' h_v m' - M' \nabla_v m' \right) A.$$

On account of assumptions, we also infer

$$(M h_v m - M \nabla_v m) I \preceq A_{h_v} B - A \nabla_v B \preceq (M' h_v m' - M' \nabla_v m') I.$$

In addition, with the same assumption to Theorem 2.6 except for $v \notin [0, 1]$, we have

$$\min \{g_v(s), g_v(t)\} \preceq A \nabla_v B - A \frac{1}{2} B,$$

since we have $\min \{g_v(s), g_v(t)\} \leq g_v(x)$ by $g_v'(x) \leq 0$, for $v \notin [0, 1]$.

Acknowledgement: The authors thank anonymous referees for giving valuable comments and suggestions to improve our manuscript. The author (S.F.) was partially supported by JSPS KAKENHI Grant Number 16K05257.

References