IMA Commission on New Minerals, Nomenclature and Classification (CNMNC)

NEWSLETTER 20

New minerals and nomenclature modifications approved in 2014

P. A. WILLIAMS¹ (Chairman, CNMNC), F. HATERT² (Vice-Chairman, CNMNC), M. PASERO³ (Vice-Chairman, CNMNC) AND S. J. MILLS⁴ (Secretary, CNMNC)

¹ School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia – p.williams@uws.edu.au
² Laboratoire de Minéralogie, Université de Liège, B-4000 Liège, Belgium – fhatert@ulg.ac.be
³ Dipartimento di Scienze della Terra, Università degli Studi di Pisa, Via Santa Maria 53, I-56126 Pisa, Italy – marco.pasero@dst.unipi.it
⁴ Geosciences, Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia – smills@museum.vic.gov.au

The information given here is provided by the IMA Commission on New Minerals, Nomenclature and Classification for comparative purposes and as a service to mineralogists working on new species.

Each mineral is described in the following format:

Mineral name, if the authors agree on its release prior to the full description appearing in press
Chemical formula
Type locality
Full authorship of proposal
E-mail address of corresponding author
Relationship to other minerals
Crystal system, Space group; Structure determined, yes or no
Unit-cell parameters
Strongest lines in the X-ray powder diffraction pattern
Type specimen repository and specimen number
Citation details for the mineral prior to publication of full description

Citation details concern the fact that this information will be published in the Mineralogical Magazine on a routine basis, as well as being added month by month to the Commission’s web site.

It is still a requirement for the authors to publish a full description of the new mineral.

NO OTHER INFORMATION WILL BE RELEASED BY THE COMMISSION

DOI: 10.1180/minmag.2014.078.3.05
NEW MINERAL PROPOSALS APPROVED IN FEBRUARY 2014

IMA No. 2013-120
Mojaveite
Cu₆[Te⁶⁺O₄(OH)₂](OH)₇Cl
Blue Bell claims in the Soda Mountains, 11 km W of Baker, San Bernardino County, California, USA (35°14′31″N, 116°12′17″W); Aga mine on Otto Mountain, 1.5 km NW of Baker (35.27215°N, 116.09927°W); Bird Nest drift on the SW flank of Otto Mountain, 0.75 km NW of the Aga mine (35.27677°N, 116.09927°W)
Stuart J. Mills*, Anthony R. Kampf, Andrew G. Christy, Robert M. Housley, George R. Rossman and Joe Marty
*E-mail: smills@museum.vic.gov.au
Structurally related to bluebellite (IMA 2013-121)
Trigonal: R3
\[a = 8.316(2), c = 13.202(6) \, \text{Å} \]
4.403(91), 2.672(28), 2.512(100), 2.110(27), 1.889(34), 1.570(39), 1.481(34), 1.338(14)
Cotype material is deposited in the collections of the Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA, catalogue numbers 64091 and 64092 (Blue Bell claims) and 64093 and 64094 (Bird Nest drift)

IMA No. 2013-121
Bluebellite
Cu₄(IO₃)(OH)₁₀Cl
Blue Bell claims in the Soda Mountains, 11 km W of Baker, San Bernardino County, California, USA (35°14′31″N, 116°12′17″W)
*E-mail: smills@museum.vic.gov.au
Structurally related to mojaveite (IMA 2013-120)
Trigonal: R3
\[a = 8.3017(5), c = 13.239(1) \, \text{Å} \]
4.427(99), 2.664(35), 2.516(100), 2.213(9), 2.103(29), 1.8990(47), 1.5663(48), 1.4788(29)
Cotype material is deposited in the collections of the Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA, catalogue numbers 64083 to 64090 (Blue Bell claims) and 64093 and 64094 (Bird Nest drift)

IMA No. 2013-122
Flamite
(Ca,Na,K)₂(Si,P)O₄
Southern Hatrurim Basin, Negev desert, Israel (31°10′26″N, 35°17′31″E)
Ella V. Sokol*, Yurii V. Seryotkin, Svetlana N. Kokh, Yevgeny Vapnik, Elena N. Nigmatulina, Sergey V. Goryainov, Elena V. Belogub and Victor V. Sharygin
*E-mail: sokol@igm.nsc.ru
Known structure type
Hexagonal: P6₃
\[a = 4.3373(2), c = 6.8270(4) \, \text{Å} \]
2.897(19), 2.765(44), 2.759(42), 2.713(100), 2.518(29), 2.402(23), 1.967(18), 1.762(32)
Type material is deposited in the collections of the Central Siberian Geological Museum, V.S. Sobolev Institute of Geology and Mineralogy, 3 Ac. Koptyuga Avenue, Novosibirsk, 630090 Russia, catalogue number XIII-341/1

IMA No. 2013-123
Maruyamaite
K(MgAl₂)(Al₅Mg)(BO₃)₃(Si₆O₁₈)(OH)₃O
Kumdy-Kol area, Kokchetav Massif, Kazakhstan
Aaron Lussier, Neil A. Ball, Frank C. Hawthorne*, Darrell J. Henry, Rentaro Shimizu, Yoshihide Ogawara and Tsutomu Ota
*E-mail: frank_hawthorne@umanitoba.ca
Tourmaline supergroup
Trigonal: R3m; structure determined
\[a = 15.9555(10), c = 7.227(4) \, \text{Å} \]
6.415(23), 4.237(59), 3.995(69), 3.498(42), 2.974(85), 2.581(100), 2.046(54), 1.923(36)
550

Unauthenticated
Download Date | 6/28/19 11:20 PM
Type material is deposited in the collections of the National Museum of Nature and Science, Tsukuba, Japan, registered number NSM-MF15696

IMA No. 2013-125
Pilawite-(Y)
\(\text{Ca}_2\text{Y}_2\text{Al}_4(\text{SiO}_4)_4\text{O}_2(\text{OH})_2 \)
Pilawa Górna quarry, Góry Sowie Block, Lower Silesia, Poland \((50º42'11.77''N, 16º44'12.36''E) \)
Adam Pieczka*, Frank C. Hawthorne, Mark A. Cooper, Eligiusz Szelęg, Adam Szuszkiewicz, Krzysztof Turniak, Krzysztof Nejbert and Sławomir S. Ilnicki
*E-mail: pieczka@agh.edu.pl
Structurally related to palermoite
Monoclinic: \(\text{P}_2_1/c \); structure determined
\(a = 8.571(5), b = 7.261(4), c = 11.187(6) \text{ Å} \), \(\beta = 91.00(2)^o \)
3.921(38), 3.044(100), 2.791(43), 2.651(46), 2.583(54), 2.485(62), 2.408(45), 2.147(42)
Type material is deposited in the collections of the Mineralogical Museum of the University of Wrocław, Wrocław, Poland, catalogue number MMWr IV7676

IMA No. 2013-126
Ferriakasakaite-(La)
\(\text{CaLaFe}_{3+}\text{AlMn}^{2+}(\text{Si}_2\text{O}_7)(\text{SiO}_4)\text{O(OH)} \)
Shobu, Ise City, Mie Prefecture, Japan
Mariko Nagashima*, Daisuke Nishio-Hamane, Norimitsu Tomita, Tetsuo Minakawa and Sachio Inaba
*E-mail: nagashim@yamaguchi-u.ac.jp
Epidote supergroup
Monoclinic: \(\text{P}_{2_1}/m \); structure determined
\(a = 8.8799(1), b = 5.7399(1), c = 10.0875(2) \text{ Å} \), \(\beta = 113.899(1)^o \)
9.223(23), 3.510(46), 2.900(100), 2.870(40), 2.710(35), 2.706(35), 2.615(53), 2.573(26)
Type material is deposited in the collections of the National Museum of Nature and Science, Tsukuba, Japan, specimen number NSM M-43920

IMA No. 2013-127
Ferriandrosite-(La)
\(\text{MnLaFe}_{3+}\text{AlMn}^{2+}(\text{Si}_2\text{O}_7)(\text{SiO}_4)\text{O(OH)} \)
Shobu, Ise City, Mie Prefecture, Japan
Mariko Nagashima*, Daisuke Nishio-Hamane, Norimitsu Tomita, Tetsuo Minakawa and Sachio Inaba
*E-mail: nagashim@yamaguchi-u.ac.jp
Epidote supergroup
Monoclinic: \(\text{P}_{2_1}/m \); structure determined
\(a = 8.8779(1), b = 5.7399(1), c = 10.0875(2) \text{ Å} \), \(\beta = 113.899(1)^o \)
9.223(23), 3.510(46), 2.900(100), 2.870(40), 2.710(35), 2.706(35), 2.615(53), 2.573(26)
Type material is deposited in the collections of the National Museum of Nature and Science, Tsukuba, Japan, specimen number NSM M-43920

IMA No. 2013-128
Liebermannite
\(\text{KAlSi}_3\text{O}_8 \)
Zagami meteorite, fell at Zagami, Katsina Province, Nigeria
Chi Ma*, Oliver Tschauner and John R. Beckett
*E-mail: chi@gps.caltech.edu
K analogue of lingunite
Tetragonal: \(\text{I}_4/\text{m} \); structure determined
\(a = 9.14(4), c = 2.74(2) \text{ Å} \)
6.463(53), 2.890(100), 2.036(87), 1.859(16), 1.442(27), 1.368(13), 1.317(16), 1.266(15)
Type material is deposited in the collections of the Smithsonian Institution’s National Museum of Natural History, Washington DC, USA, registration number USNM 7619
IMA No. 2013-129

Warkite

\(\text{Ca}_2\text{Sc}_6\text{Al}_6\text{O}_{20} \)

Murchison meteorite, fell at Murchison, Victoria, Australia and Vigarano meteorite, fell near Vigarano Pieve, Ferrara, Italy

Chi Ma*, Alexander N. Krot, Kazuhide Nagashima and Oliver Tschauner

*E-mail: chi@gps.caltech.edu

Sapphirine group

Triclinic: \(\text{P} \bar{1} \)

\(a = 10.367, b = 10.756, c = 8.895 \) Å, \(\alpha = 105.98, \beta = 96.04, \gamma = 124.72^\circ \)

8.067(53), 8.063(51), 4.802(74), 2.684(72), 2.544(100), 2.541(78), 2.540(77)

Type material is deposited in the collections of the Field Museum, Chicago, Illinois, USA (Murchison) and the Smithsonian Institution’s National Museum of Natural History, Washington DC, USA, registration number USNM 7618 (Vigarano)

IMA No. 2013-130

Iyoite

\(\text{MnCuCl(OH)}_3 \)

Ohku mine, Sadamisaki Peninsula, Shikoku Island, Ehime Prefecture, Japan (33\(^\circ\)24'42''N, 132\(^\circ\)10'52''E)

Daisuke Nishio-Hamane*, Koichi Momma, Masayuki Ohnishi, Norimasa Shimobayashi, Ritsuro Miyawaki, Norimitsu Tomita and Tetsuo Minakawa

*E-mail: hamane@issp.u-tokyo.ac.jp

Mn-Cu ordered analogue of botallackite

Monoclinic: \(\text{P}2_1/m \); structure determined

\(a = 5.622(2), b = 6.586(2), c = 5.719(2) \) Å, \(\beta = 91.55(3)^\circ \)

5.7155(100), 2.8547(22), 2.8432(28), 2.5596(62), 2.5330(14), 2.4929(37), 2.0304(17), 2.0016(17)

Type material is deposited in the collections of the National Museum of Nature and Science, Tsukuba, Japan, specimen number NSM M-43864

IMA No. 2013-132

Kojonenite

\(\text{Pd}_7\text{SnTe}_2 \) (0.3 \(\leq x \leq 0.8 \))

Minneapolis Adit, Howland Reef, Stillwater Complex, Stillwater Valley, Montana, USA (45\(^\circ\)33'11''N, 109\(^\circ\)53'03''W)

Chris J. Stanley* and Anna Vymazalová

*E-mail: C.Stanley@nhm.ac.uk

Known synthetic analogue

Tetragonal: \(\text{I}4/mmm \)

\(a = 4.001(1), c = 20.929(3) \) Å

10.4650(29), 2.4906(52), 2.1986(100), 2.0930(18), 2.0025(48), 1.4469(17), 1.4160(12), 1.1905(17)

Type material is deposited in the collections of the Natural History Museum, London, UK, registered number BM 1981,134

NEW MINERAL PROPOSALS APPROVED IN MARCH 2014

IMA No. 2013-124
Thalliumpharmacosiderite
TlFe₄[(AsO₄)₃(OH)₄]·4H₂O
Crven Dol Canyon, Rozsdan region, Macedonia (41º58'54"N, 21º57'13"E)
Mike S. Rumsey*, Stuart J. Mills, John Spratt, David G. Hay and Gunnar Farber
*E-mail: m.rumsey@nhm.ac.uk
Pharmacosiderite group
Cubic: P4₃m
a = 7.987(8) Å
8.451(46), 3.399(68), 3.273(39), 3.144(63), 2.970(34), 2.708(100), 2.526(60), 2.167(37)
Type material is deposited in the type collections of the Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY, USA, catalogue number H35024

IMA No. 2013-136
Eckermannite
NaNa₂(Mg₄Al)Si₈O₂₂(OH)₂
Jade Mine Tract, Kachin Province, Myanmar
Roberta Oberti*, Massimo Boiocchi, Frank C. Hawthorne, Neil A. Ball and George E. Harlow
*E-mail: oberti@crystal.unipv.it
Amphibole supergroup
Monoclinic: C2/m; structure determined
a = 9.867(1), b = 17.928(2), c = 5.2839(6) Å, β = 103.799(2)°
8.451(46), 3.399(68), 3.273(39), 3.144(63), 2.970(34), 2.708(100), 2.526(60), 2.167(37)
Type material is deposited in the collections of the Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY, USA, catalogue number H35024

IMA No. 2013-137
Magnesio-arfvedsonite
NaNa₂(Mg₄Fe³⁺)Si₈O₂₂(OH)₂
Jade Mine Tract, Kachin Province, Myanmar
Roberta Oberti*, Massimo Boiocchi, Frank C. Hawthorne, Neil A. Ball and George E. Harlow
*E-mail: oberti@crystal.unipv.it
Amphibole supergroup
Monoclinic: C2/m; structure determined
a = 9.867(1), b = 17.928(2), c = 5.2839(6) Å, β = 103.799(2)°
8.451(46), 3.399(68), 3.273(39), 3.144(63), 2.970(34), 2.708(100), 2.526(60), 2.167(37)
Type material is deposited in the collections of the Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY, USA, catalogue number H35024

IMA No. 2013-139
Silicocarnotite
Ca₅[(PO₄)(SiO₄)](PO₄)
Hatrurim Basin, Negev Desert, Israel (31º12’31”N, 35º17’09”E)
Evgeny V. Galuskin*, Joachim Kusz, Frank
Gfeller, Irina O. Galuskina, Yevgeny Vapnik, Mateusz Dulski and Piotr Dzierzanowski
*E-mail: evgeny.galuskin@us.edu.pl

Known synthetic analogue
Orthorhombic: \(\text{Pnma} \); structure determined
\[a = 6.7230(1), \quad b = 15.4481(2), \quad c = 10.0847(2) \text{ Å} \]
\[\beta = 90.00(17), \quad 2.949(61), \quad 2.810(100), \quad 2.588(55), \quad 2.167(18), \quad 2.030(30), \quad 1.952(22), \quad 1.865(62) \]

Type material is deposited in the collections of the Museum of Natural History, Bernastrasse 5, CH-3005 Bern, Switzerland, catalogue number NMBE-42716

IMA No. 2013-140
Katophorite
\[\text{Na(NaCa)(Mg}_4\text{Al)(Si}_7\text{Al)O}_22(\text{OH})_2 \]
Jade Mine Tract, Kachin Province, Myanmar
Roberta Oberti*, Massimo Boiocchi, Frank C. Hawthorne, Neil A. Ball and George E. Harlow
*E-mail: oberti@crystal.unipv.it

Amphibole supergroup
Monoclinic: \(\text{C2/m} \); structure determined
\[a = 9.8573(8), \quad b = 17.962(1), \quad c = 5.2833(4) \text{ Å} \]
\[\beta = 102.55(2)º \]

Type material is deposited in the collections of the Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY, USA, catalogue number H32374

IMA No. 2013-141
Bonazzite
\[\text{As}_3\text{S}_4 \]
Khaidarkan deposit, Fergana Valley, Alai Range, Osh Oblast, Kyrgyzstan
Luca Bindi*, Giovanni Pratesi, Maurizio Muniz-Miranda, Matteo Zoppi, Laura Chelazzi, Giovanni O. Lepore and Silvio Menchetti
*E-mail: luca.bindi@unifi.it

A polymorph of realgar and pararealgar
Monoclinic: \(\text{C2/c} \); structure determined
\[a = 9.956(1), \quad b = 9.308(1), \quad c = 8.869(1) \text{ Å} \]
\[\beta = 102.55(2)º \]
\[5.74(100), \quad 4.86(30), \quad 4.10(60), \quad 3.92(50), \quad 3.12(60), \quad 2.95(50), \quad 2.86(80), \quad 2.37(30) \]

Type material is deposited in the collections of the Mineralogical Museum, St Petersburg State University, St Petersburg 199034, Russia, sample number 1/19608

Hexiong Yang, Benjamin N. Schumer, Robert A. Jenkins, J. Rueben Bautista, Robert T. Downs and Stanley H. Evans

*E-mail: hyang@u.arizona.edu

New structure type

Cubic: I 213; structure determined

a = 10.7627(2) Å
4.351(34), 3.775(25), 3.389(82), 3.104(33), 2.875(100), 2.111(45), 1.905(27), 1.748(34)

Cotype material is deposited in the collections of the Mineral Museum of the University of Arizona, Tucson, Arizona, USA, catalogue number 19800 and with the RRUFF Project, deposition number R130753

IMA No. 2014-002

Petersite-(Ce)

Cu₆Ce(PO₄)₃(OH)₆·3H₂O

Cherry Creek District, Yavapai County, Arizona, USA (34°34'N, 112°5'W)

Shaunna M. Morrison*, Kenneth J. Domanik, Hexiong Yang and Robert T. Downs

*E-mail: shaunnamm@email.arizona.edu

Mixite group

Hexagonal: P6₃/m; structure determined

a = 13.2197(18), c = 5.8591(9) Å
6.610(100), 5.724(31), 4.327(6), 3.305(10), 3.175(4), 2.862(6), 2.672(4), 2.426(6)

Type material is deposited in the collections of the Mineral Museum of the University of Arizona, Tucson, Arizona, USA, catalogue number 19801 and with the RRUFF Project, deposition number R050541

IMA No. 2014-003

Ferrivauxite

Fe³⁺Al₂(PO₄)₂(OH)₁₀·5H₂O

Siglo XX Mine, Llallagua, Potosí, Bolivia (18°25'00''S, 66°37'59''W, ~4000 m asl)

Gunnar Raade*, Joel Grice and Ralph Rowe

*E-mail: gunn-ra@online.no

Vantasselite-vauxite group

Triclinic: P 1; structure determined

a = 9.198(2), b = 11.607(3), c = 6.112(2) Å,
α = 98.237(9), β = 91.90(1), γ = 108.658(9)°
10.834(100), 8.682(24), 8.242(65), 6.018(28), 5.918(23), 5.491(29), 4.338(26), 2.898(32)

Type material is deposited in the collections of the Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway, catalogue number 43576 and the Canadian Museum of Nature, PO Box 3443, Station ‘D’, Ottawa, Ontario, K1P 6P4, Canada, catalogue number CMNMC 86850

IMA No. 2014-005

Pieczkaite

Mn₅(PO₄)₃Cl

Southeastern shoreline of a small, unnamed island in Cross Lake, Manitoba, Canada (54°41'N, 97°49'W)

Kim Tait, Frank C. Hawthorne*, Neil Ball and Yassir Abdu

*E-mail: Frank.Hawthorne@umanitoba.ca

Apatite supergroup

Hexagonal: P6₃/m; structure determined

a = 9.504(4), c = 6.347(3) Å
3.453(15), 3.174(24), 2.794(100), 2.744(88), 2.639(34), 2.514(25), 1.853(25), 1.750(22)

Type material is deposited in the collections of the Department of Natural History (Mineralogy), Royal Ontario Museum, 100 Queens Park, Toronto, Ontario M5S 2C6, Canada, catalogue number M56483

IMA No. 2014-006

Geschieberite

K₂(UO₂)(SO₄)₂·2H₂O

Svornost (Einigkeit) mine, Jáchymov (St Joachimsthal) ore district, Western Bohemia, Czech Republic

Jakub Plášil*, Jan Hloušek, Anatoly V. Kasatkin, Radek Škoda, Milan Novák and Jiří Čejka

*E-mail: plasil@fzu.cz

Known synthetic analogue

Orthorhombic: Pna₂₁; structure determined

a = 13.7778(3), b = 7.2709(4), c = 11.5488(2) Å
NEW MINERAL PROPOSALS APPROVED IN MAY 2014

IMA No. 2014-007
Mendigite

Mn₃Mn₂MnCa(Si₃O₉)₂
Dellen (Zieglowski) quarry, 1.5 km NE of Mendig, Laacher See area, Eifel region, Rhineland-Palatinate (Rheinland-Pfalz), Germany

Nikita V. Chukanov*, Sergey M. Aksenov, Ramiza K. Rastsvetaeva, Konstantin V. Van, Dmitry I. Belakovskiy, Igor V. Pekov, Vladislav V. Gurzhiy, Willi Schüller and Bernd Ternes

*C-E-mail: chukanov@icp.ac.ru

Closely related to bustamite

Triclinic: P1; structure determined

a = 7.0993(4), b = 7.6370(5), c = 7.7037(4) Å,
α = 79.58(1), β = 62.62(1), γ = 76.47(1)°

Type material is deposited in the collections of the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, registration number 4420/1

IMA No. 2014-008
Wernerkrauseite

Ca(Fe³⁺,Mn³⁺)₂Mn⁴⁺O₆
Bellerberg volcano (Caspar quarry), Ettringen, Eifel, Rhineland-Palatinate, Germany

Evgeny V. Galuskin*, Biljana Lazic, Günter Blass, Remo Widmer and Irina O. Galuskina

*E-mail: evgeny.galuskin@us.edu.pl

Known synthetic analogue

Orthorhombic: Pnma; structure determined

a = 26.809(1), b = 12.4085(6), c = 7.2512(3) Å

Type material is deposited in the collections of the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, registration number 4420/1

IMA No. 2014-009
Flinteite

K₂ZnCl₄
Northern fumarole field, First scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (55º41'N, 160º14'E, 1200 m asl)

Igor V. Pekov*, Natalia V. Zubkova, Vasiliy O. Yapaskurt, Sergey N. Britvin, Marina F. Vigasina, Evgeny G. Sidorov and Dmitriy Y. Pushcharovsky

*E-mail: igorpekov@mail.ru

Known synthetic analogue

Orthorhombic: Pn21; structure determined

a = 26.809(1), b = 12.4085(6), c = 7.2512(3) Å

Type material is deposited in the collections of the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, registration number 4529/1

IMA No. 2014-010
Mellizinkalite

K₃Zn₂Cl₇
Glavnaya Tenoritovaya (Major Tenorite) fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (55º41'N, 160º14'E, 1200 m asl)

P. A. WILLIAMS ET AL.

Unauthenticated Download Date | 6/28/19 11:20 PM

*E-mail: igorpekov@mail.ru

New structure type

Triclinic: \(P\bar{1} \); structure determined

\[a = 6.7737(4), b = 10.571(1), c = 11.073(1) \text{ Å}, \]
\[\alpha = 117.93(1), \beta = 106.909(5), \gamma = 90.389(8)\]º

9.20(69), 6.40(100), 5.712(47), 4.608(92),
3.499(55), 3.473(73), 3.393(66), 3.075(49)

Type material is deposited in the collections of the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, registration number 4533/1

IMA No. 2014-011

Romanorlovite

\(K_3CuCl_3(OH)_3 \)

Glavnaya Tenoritovaya (Major Tenorite) fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (55°41'N, 160°14'E, 1200 m asl)

*E-mail: igorpekov@mail.ru

New structure type

Tetragonal: \(P4/n \); structure determined

\[a = 15.846(8), b = 10.024(5), c = 6.343(3) \text{ Å}, \]
\[\beta = 99.037(8)\]º

4.002(40), 3.907(100), 3.643(80), 3.484(30),
3.128(30), 2.967(60), 2.647(38), 2.506(50)

type material is deposited in the collections of the Natural History Museum Basel, Switzerland, catalogue number S210 and the Natural History Museum Vienna, Austria, specimen number N 9581

IMA No. 2014-012

Spaltiite

\(Tl_2Cu_2As_2S_5 \)

Lengenbach quarry, Im Feld, Binntal, Canton Wallis, Switzerland

Stefan Graeser*, Dan Topa, Herta Effenberger, Emil Makovicky and Werner H. Paar

*E-mail: stefan.graeser@unibas.ch

New structure type

Monoclinic: \(P2_1/c \); structure determined

\[a = 15.846(8), b = 10.024(5), c = 6.343(3) \text{ Å}, \]
\[\beta = 99.037(8)\]º

4.002(40), 3.907(100), 3.643(80), 3.484(30),
3.128(30), 2.967(60), 2.647(38), 2.506(50)

type material is deposited in the collections of the Natural History Museum Basel, Switzerland, catalogue number S210 and the Natural History Museum Vienna, Austria, specimen number N 9581

IMA No. 2014-013

Favreauite

\(PbBiCu_6O_4(SeO_3)_4(OH)\cdot H_2O \)

El Drago´n mine, Antonio Quijarro Province, Potosı´ Department, Bolivia (19°49’15”S, 65°55’0”W)

Stuart J. Mills*, Anthony R. Kampf, Robert M. Housley, Andrew G. Christy, Brent Thorne, Yu-Sheng Chen and Ian M. Steele

*E-mail: smills@museum.vic.gov.au

New structure type

Tetragonal: \(P4/n \); structure determined

\[a = 9.860(4), c = 9.700(5) \text{ Å}, \]
\[5.67(100), 3.470(76), 3.190(35), 2.961(40),
2.831(68), 2.709(33), 2.632(34), 2.247(36)

type material is deposited in the collections of the Museum Victoria, Australia, registration number M53004 and the Natural History Museum of Los Angeles County, Los Angeles, USA, catalogue numbers 64111, 64112, 64113

IMA 13-C: Mayenite supergroup
A proposal to modify the nomenclature of the mayenite supergroup has been approved. As a consequence, the mineral brearleyite has been discredited as being the same as chlormayenite; mayenite has been redefined and renamed chlormayenite; kyuygenite has been renamed chlorkyuygenite; a group nomenclature has been established for the mayenite supergroup.

IMA 13-E: Barylite-clinobarylite
The proposal 13-E has been accepted and the mineral “clinobarylite” is discredited since it corresponds to the polytype barylite-1O. The mineral reported in the literature as barylite corresponds to the polytype barylite-2O.

IMA 14-A: Thénardite
The proposal 14-A has been accepted and the mineral name “thenardite” becomes thénardite, in agreement with its original spelling.

IMA 14-C: Litidionite
The proposal 14-C has been accepted and the mineral name “lithidionite” becomes litidionite, in agreement with its original spelling.

REVISED CHEMICAL FORMULAE
A paper on the mineral magbasite has been recently published [Mineralogical Magazine, 78 (2014), 29–45] in which the ideal chemical formula of the mineral is given as KBaFe$^{3+}$Mg$_7$Si$_8$O$_{22}$(OH)$_2$F$_6$. These data were examined carefully by the CNMNC officers and were considered reliable. Accordingly it was agreed to modify the formula of magbasite in the official IMA List of Minerals.

A paper on the mineral widenmannite has been recently published [American Mineralogist, 99 (2014), 276–282] in which the ideal chemical formula of the mineral is given as Pb$_2$(OH)$_2$[(UO$_2$)(CO$_3$)$_2$]. These data were examined carefully by the CNMNC officers and were considered reliable. Accordingly it was agreed to modify the formula of widenmannite in the official IMA List of Minerals.

ERRATUM
IMA No. 2013-107 Zuktamrurite
In CNMNC Newsletter 19, the space group was given incorrectly. The correct space group is orthorhombic, Pnnm.