Abstract

The paper presents examinations of the surface of base concrete with a 3D scanner. Two base concrete surfaces, differently prepared, were examined, together with two measurement strategies: simple and fast 3D scanning and partial scanning in selected areas corresponding to the device measurement space. In order to complete the analysis of a concrete surface topography an original Matlab-based program TAS (Topography Analysis and Simulation) was developed for both 2D and 3D surface analyses. It enables data processing, calculation of parameters, data visualization and digital filtration.

Keywords: 3D surface metrology, concrete, optical method, roughness, topography measurement.

© 2015 Polish Academy of Sciences. All rights reserved

1. Introduction

Concrete multilayer elements have become increasingly popular in residential buildings and multi-level garages [1–2] owing mainly to their durability in comparison with other types [3]. Unfortunately, construction defects, such as lack of adhesion between the base concrete layer and the topping, reduce this durability [4–14].

An attempt to determine a correlation between concrete surface roughness parameters and the degree of bonding is described in [15], where it is shown that there is a correlation between concrete surface roughness parameters and the resistance of concrete layers to delamination, measured by the semi-destructive (SDT) pull-off method. Garbacz et al. [16] analysed correlations between the concrete surface geometry parameters determined by laser profilometry, mechanical profilometry, the microscopic method and the “sand” (macroscopic) method as well as correlations between the parameters and the adhesion of layered concrete members. Davis [17] and Hertlein [18] recommend the non-destructive impulse response (IR) method to search for delamination in concrete layers. They successfully applied the IR method to small area concrete surfaces. Franck and De Belie [19] analysed the impact of concrete surface roughness on a bovine claw model and deformation of the latter under load. The roughness parameters were determined by the profile method using a high-precision laser beam. Because, as defined in [20], concrete is a composite material composed of a coarse granular material (aggregate or filler) embedded in a hard matrix (cement or binder) which fills the space between the aggregate particles and glues them together, a surface profile analysis can miss important information (Fig. 1). It is worth noting that a single profile does not sufficiently characterize surface properties. In [21–22] the authors attempted to carry out a 3D analysis.
of the surface of concrete, but the methodology used made it possible to measure only a very small part of the analysed surface.

Therefore, a methodology for measuring and analysing the surface topography of a large area of concrete at high resolution needs to be developed [23]. It is also important to determine which 3D parameters best describe the topography of concrete.

2. Materials and methods

2.1. Coordinate measurement technique

In mechanical engineering surface measurements were initially associated with the measurement of a surface profile (2D measurement). Even today 2D measurements are still used, especially in industry. Unfortunately, this type of measurement has serious limitations, shown in Fig. 1. In the last decades many scientists and designers have become convinced that the third dimension should be added to the analysis [24–35]. Today the 3D analysis of surface geometry has become widely accepted, though there is still some disorder in the terminology and classification of 3D parameters. Various methods are used to measure the surface topography [36–38]. Most of the existing topography analysis systems are based on a number of profiles, mostly parallel [39, 40]. Myshkin [41] proposed the following division of measuring methods: stylus methods, optical methods, SEM methods, AFM and STM methods. A similar, but more detailed division is shown in [24]. The above methods can be used to measure areas from nm to mm in size, which is not sufficient for the proper measurement of concrete surface topography. Therefore, a nonstandard method of measuring the concrete surface topography is needed. In the case of large concrete surface details, the measured points of an inspected feature are usually distant from each other. The best solution seems to be an optical method combined with the coordinate measurement technique [42–45]. There are several optical methods of measuring the coordinates of 3D objects. They are generally divided into active and passive methods. The coordinate measuring scanner used in the research (Fig. 2a) is a stereoscopic system based on two measuring cameras.

The scanner uses the digital light projection (DLP) method and is equipped with measuring objectives (corresponding to certain measured spaces) and a high-quality projector ensuring a very high resolution of the cloud of points. Using this scanner one can scan elements from a few millimetres to a few tens of meters in size. The scanner measurement method is based on the principle of triangulation (Fig. 2b), consisting in observing the pattern of spectral lines on the measured detail by two cameras and then calculating a coordinate point for each camera pixel.
The measurement area of the optical scanner may vary from 175×140 to 2000×1600 $[\text{mm}^2]$ and its declared resolution is $20 \, \mu\text{m}$ in all directions (x, y, z). The accuracy of identifying the points depends on the measurement area, the distance between single probing points, the method of measurement responsible for registration of the cloud of points corresponding to the measured object, and on the data processing method [25]. The dimensions of concrete surfaces sometimes exceed 10000 mm and then they can be considered as large scale details. In order to measure such details one can use one of the following proper measurement strategies ensuring the required accuracy of the measurement results [43]:

- Measurement Strategy A: simple and fast 3D scanning; the measured detail is placed within the measurement area of the optical coordinate system; the detail can be slightly larger (Fig. 3a).
- Measurement Strategy B: the measured detail is subjected to partial scanning (in selected areas corresponding to the device measurement space) until all data are acquired. As opposed to Measurement Strategy A, the complete scanning of a detail is possible here only by performing a series of single measurements (Fig. 3b).

The accuracy of identifying the particular points depends directly on the measured space, the distance between single probing points, the measurement method responsible for registration of the cloud of points corresponding to the measured object (Fig. 4a), and on the method of data processing in the polygonization process necessary to transform the cloud of points into a virtual object defined by a polygonal grid of triangles (Fig. 4b) [43].
2.2. TAS software

In order to complete the analysis of a concrete surface topography, our team has developed an original Matlab-based program for both 2D and 3D surface analyses. The program is called TAS (Topography Analysis and Simulation). It includes four modules: an initial data processing module, a basic parameter calculating module, a data visualization module and a digital filtration module. The latter is a Gaussian filter designed in accordance with the draft standard ISO/TC 213 N510 recommendations and described by (1):

\[
h(x, y) = \frac{1}{\beta \lambda_x \lambda_y} \exp \left\{ -\frac{\pi}{\beta} \left[\frac{x}{\lambda_x} \right]^2 + \left[\frac{y}{\lambda_y} \right]^2 \right\}. \tag{1}\]

Examples of filtration are shown in Fig. 5.

Fig. 4. a) The cloud of points corresponding to the measured detail; b) a grid of triangles after the polygonization process.

Fig. 5. Examples of Gaussian digital filtration: impulse responses and concrete surfaces.

An algorithm has been developed to calculate 3D surface topography parameters. According to Stout et al. [27] the 3D parameters can be divided into four groups: amplitude, spatial, hybrid and functional ones. The amplitude and functional parameters are most useful for evaluation of...
a concrete surface topography. In most cases it is enough to use eight parameters [27–34]. In order to distinguish the parameters acquired from the surface from those determined on the basis of a single profile the former ones are marked with the letter S.

2.3. Experimental setup

Two 125 mm thick 2500x2500 mm large area concrete surfaces were examined. The concrete surfaces were made of class C30/37 concrete with a maximum aggregate grading of 8 mm. The surfaces were laid on a 2 mm thick polyethylene sheeting and a 100 mm thick sand layer. The surfaces were cured naturally in a laboratory hall (air temperature of +18°C, relative air humidity of 60%). During the first week they were stored under sheeting. Concrete surface I was prepared by mechanical grinding while surface II after concreting was not prepared (after concreting the surface was left unchanged).

![Diagram](image.png)

Figure 6 shows the ways of preparing the base concrete surfaces, the method of measuring the base concrete surface topography and the measured surface roughness parameters.

The scanner maximum measurement horizontal range of 2000 x 1600 [mm²] was used in this study. The area of the concrete surfaces was divided into several smaller areas. After the concrete slabs had been labelled a 1500 x 1500 mm test area was demarcated on each of them. A grid of points spaced at every 100 mm was marked on each of the slabs. The columns were denoted with letters from A to H and the rows were numbered from 1 to 16. In total, 256 measured points were marked on each surface (Fig. 7).

The entire surface of the slab was scanned by the optical scanner (Fig. 8) and then – using the dedicated software – a 3D image of the scanned surface was obtained.

In order to determine 3D parameters of the examined concrete surfaces, it became necessary to develop an algorithm for processing the measurement data. The surface scanning yielded a cloud of points. To convert the points onto a rectangular grid the Matlab’s “griddata function” was used. This function fits a surface in the form $z = f(x, y)$ to data in nonuniformly spaced vectors (x, y, z). The griddata function interpolates the surface at the points specified by (X_i, Y_i) to produce Z_i. The surface always passes through data points Xi and Yi, forming a uniform grid (Fig. 9).
Fig. 7. Distribution of measured points on the examined concrete slabs.

Fig. 8. Scanning a concrete surface with the optical coordinate measuring scanner.

Fig. 9. The cloud of points converted onto a rectangular grid.
3. Results and discussion

The numerical values of the particular base concrete surface roughness parameters in each measured point were determined. Examples of the obtained surface topography images for a selected point on surface I and II are presented below (Figs. 10–13).

![Fig. 10. Examples of the obtained surface topography images for a selected point A1: a) surface I; b) surface II.](image)

![Fig. 11. Examples of the obtained surfaces topography images for a selected point C6: a) surface I; b) surface II.](image)

After scanning the concrete surfaces 80 areas for each of the analysed concrete slabs were obtained. For each of the surfaces their 3D topography parameters (amplitude parameters, spatial parameters, hybrid parameters and functional parameters) were calculated using the TAS software. Then, the average values of 256 parameters and the mean deviations were calculated. Fig. 14a shows an example of the S_{sk} amplitude parameter distribution calculated for concrete surface number II while Fig. 14b shows an example of the S_{ct} functional parameter distribution calculated for concrete surface number I.
Fig. 12. Examples of the obtained surfaces topography images for a selected point E5:
a) surface I; b) surface II.

Fig. 13. Examples of the obtained surfaces topography images for a selected point F5:
a) surface I; b) surface II.

Fig. 14. a) The S_{sk} amplitude parameter distribution calculated for concrete surface II; b) the S_{ci} amplitude parameter distribution calculated for concrete surface I.
Table 1 presents some values of the surface topography parameters for the analysed concrete slabs. Analysis of this values shows reduction of the average values of Sq, Ssk and Svi roughness parameters of surface I in comparison with the average values of the same parameters describing surface II. The average values of Sku and Sbi were observed to be higher for surface II while the values of parameter Sci are on a similar level for both surfaces.

<table>
<thead>
<tr>
<th>SURFACE NO.</th>
<th>PARAMETERS</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sq</td>
<td>0.30</td>
<td>0.70</td>
<td>-0.79</td>
<td>-0.01</td>
<td>4.42</td>
<td>4.08</td>
</tr>
<tr>
<td></td>
<td>Deviation</td>
<td>0.17</td>
<td>0.24</td>
<td>0.51</td>
<td>0.41</td>
<td>1.72</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Max. Value</td>
<td>1.04</td>
<td>1.54</td>
<td>0.22</td>
<td>0.94</td>
<td>11.64</td>
<td>7.30</td>
</tr>
<tr>
<td></td>
<td>Min. Value</td>
<td>0.12</td>
<td>0.33</td>
<td>-2.28</td>
<td>-1.17</td>
<td>1.96</td>
<td>2.94</td>
</tr>
<tr>
<td></td>
<td>Ssk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sbi</td>
<td>0.015</td>
<td>0.002</td>
<td>0.026</td>
<td>0.044</td>
<td>0.739</td>
<td>0.732</td>
</tr>
<tr>
<td></td>
<td>Deviation</td>
<td>0.019</td>
<td>0.002</td>
<td>0.018</td>
<td>0.033</td>
<td>0.041</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>Max. Value</td>
<td>0.094</td>
<td>0.008</td>
<td>0.080</td>
<td>0.140</td>
<td>0.799</td>
<td>0.810</td>
</tr>
<tr>
<td></td>
<td>Min. Value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.004</td>
<td>0.601</td>
<td>0.629</td>
</tr>
</tbody>
</table>

After the analysis of the obtained parameters the question arose: which of the parameters show the largest differences? Therefore, the surface parameters obtained from surface I were divided by the surface parameters obtained from surface II (Table 2).

<table>
<thead>
<tr>
<th>SURFACE NO.</th>
<th>PARAMETERS</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sq_1/Sq_2</td>
<td>0.433</td>
<td>53.212</td>
<td>1.085</td>
<td>0.433</td>
<td>53.212</td>
<td>1.085</td>
</tr>
<tr>
<td></td>
<td>Deviation</td>
<td>0.693</td>
<td>1.241</td>
<td>2.095</td>
<td>0.693</td>
<td>1.241</td>
<td>2.095</td>
</tr>
<tr>
<td></td>
<td>Max. Value</td>
<td>0.670</td>
<td>0.232</td>
<td>1.595</td>
<td>0.670</td>
<td>0.232</td>
<td>1.595</td>
</tr>
<tr>
<td></td>
<td>Min. Value</td>
<td>0.347</td>
<td>1.954</td>
<td>0.688</td>
<td>0.347</td>
<td>1.954</td>
<td>0.688</td>
</tr>
<tr>
<td></td>
<td>Ssk_1/Ssk_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sbi_1/Sbi_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Svi_1/Svi_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sci_1/Sci_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The smallest differences were observed for the average value of the Sci parameter and the average value of the Sku parameter. The largest differences were found for the average value of the Sbi parameter and the average value of the Ssk parameter. It seems that the Ssk and Sbi parameters will be useful for analysing different concrete surface topographies. The Ssk parameter (skewness) for both analysed surfaces has a negative value which means that these

Unauthenticated
Download Date | 6/15/19 10:38 AM
are surfaces with low peaks and deep valleys. The value of the difference for surface bearing index S_{bi} indicates greater adhesion at the interface in the case of the ground surface.

4. Conclusions and perspectives

Research on large area surface topography measurements and a methodology for measuring and analysing the surface topography of a concrete surface have been presented.

Two differently prepared concrete surfaces were examined. An advanced 3D scanner and the optical (digital light projection) method have been found to be particularly useful for the measurement of concrete surfaces.

TAS (Topography Analysis and Simulation) software has been developed for analysis of the topography of concrete surfaces. It enables data processing, calculation of parameters, data visualization and digital filtration.

The S_{sk} parameter (skewness) and bearing index S_{bi} were found to be useful for evaluation of properties of the examined concrete surfaces.

Two measurement strategies: simple and fast 3D scanning and partial scanning in selected areas corresponding to the device measurement space were applied and discussed.

The results of this research indicate that the direction towards developing a methodology of measuring the topography of concrete surfaces is proper. Further research will focus on a correlation between the pull-off adhesion and the concrete surface topography. Selecting the most relevant 3D roughness parameters for concrete surfaces still remains an open issue.

References

