Resolving the thermal challenges for silicon microring resonator devices

1 Silicon microring resonator based devices

The growing bandwidth needs within data applications have motivated the replacement of traditionally electronic links with optical links for information networks as diverse as data centers, supercomputers, and fiber-optic access networks [1, 2]. Applications such as these stress the traditional portfolio of optical components, rebalancing the emphasis from expensive high-performance components towards low-cost high-volume components that can be closely integrated with electronics. With these considerations in mind, the silicon photonics platform has received wide attention for its ability to deliver the necessary bandwidth required at an economy-of-scale that will be enabled by its compatibility with CMOS fabrication processes [3].

Within the silicon photonic platform, traditional optical components such as low-loss waveguides [4], low-loss waveguide crossings [5], high-speed mach-zhender modulators (MZM) [6], arrayed waveguide-gratings [7], and efficient photodetectors [8, 9] have been demonstrated. Leveraging the high index contrast between silicon and silicon-on-insulator, the aforementioned components have been shown with much smaller footprints than their counterparts in more conventional optical platforms. For active devices, these smaller footprints directly translate to higher energy-efficiencies.

In addition to providing these improvements in footprint and energy-efficiency for traditional devices, the high-index contrast present in the silicon photonic platform enables the effective use of microring-based devices. A microring is a traveling wave resonator consisting of a ring structure side-coupled to a bus waveguide. While they have also been demonstrated in other material platforms, the high-index contrast of silicon and silicon-on-insulator has allowed them to be manifested as small as 1.5 µm in radius [10], and when used in conjunction with the free-carrier dispersion effect [11], well into GHz-rate bandwidth. Figure 1A illustrates the optical resonance of the microring and its shift with applied electrical bias [12]. In their most basic capacity they can serve as effective filters [13], switches [14, 15], and modulators [16, 17]. Additionally, microrings can be cascaded along the same waveguide bus, with each microring being offset to provide functionality for a specific wavelength. In this manner, the microring lends itself naturally for wavelength-division-multiplexed (WDM) operation, a common solution for multiplying the bandwidth of optical links [18]. Figure 2 illustrates the cascading of microring modulators for the generation of WDM optical data; this same configuration can be used on the receive side to subsequently demultiplex a WDM stream.

Microring-based devices push the limits on footprint and energy efficiency and provide an ideal solution for enabling low-cost WDM communication within the silicon photonics platform. Commercially implemented microring-based optical networks will likely be
application-tailored through the optimization of such microring characteristics as optical insertion loss, cross-
talk, footprint, modulation-bandwidth, linearity, and
-depth [19–22]. However, superseding these parameters
in importance is the issue of thermal susceptibility. For
the successful migration of microring resonators from
academic novelty to commercial implementation, the
thermal challenges that plague silicon microring-based
devices must be resolved.

2 Thermal effects on microring resonator based devices

Most optical devices exhibit some vulnerability to temper-
ature changes. However, the high thermo-optic coefficient
of silicon (1.86×10⁻⁴ K⁻¹) and the wavelength selectivity of
microring resonators make them especially susceptible to
fluctuations in temperature [23]. The shift in the resonant

![Figure 1](image1.png)

Figure 1 (A) Typical transmission spectra of carrier depletion ring modulator for different applied bias. (B) Ring modulator schematic showing a lateral and interdigitated diode design. (C) Ring waveguide cross-section and optical mode distribution. Reprinted with permission from Ref. [12], copyright (2013) IEEE.

![Figure 2](image2.png)

Figure 2 (A) Microring modulators of varying radii can be cascaded along a waveguide bus to generate WDM optical modulation. (B) Transmission spectrum for densely spaced WDM microring modulators.
wavelength of a microring with respect to temperature is given by
\[
\frac{d\lambda}{dT} = \left(n_{\text{eff}} \frac{\partial n_{\text{eff}}}{\partial T} + \frac{\partial n_{\text{eff}}}{\partial T} \right) \frac{\lambda_0}{n_g}
\]

(1)

where \(\lambda_0 \) is the resonant wavelength, \(n_{\text{eff}} \) is the effective index, \(\alpha_{\text{sub}} \) is the substrate expansion coefficient, and \(n_g \) is the group index [24, 25]. While not indicated in Eq. (1), these terms will have wavelength dependence. Because the optical mode is tightly confined in the silicon core, and also because the thermo-optic coefficient of SiO\(_2\) (1×10\(^{-6}\) K\(^{-1}\)) is a magnitude lower than that of Si, the corresponding contribution is omitted from Eq. (1). Additionally, because \(\alpha_{\text{sub}} \) (2.6×10\(^{-6}\) K\(^{-1}\) for a Si substrate) is two orders of magnitude smaller than the thermo-optic coefficient for silicon, it can be omitted as well [26], leaving the common reduced expression,
\[
\frac{d\lambda}{dT} \approx \frac{\partial n_{\text{eff}}}{\partial T} \frac{\lambda_0}{n_g}
\]

(2)

The repercussions of resonance shifts on microring functionality will be dependent on the quality factor (Q) of the resonance. However, for typical applications, deviations in temperature > 1 K will render the microring-based device inoperable [27]. This susceptibility of microring-based devices is not compatible with the temperature ranges typical of microelectronic environments. It should be clarified that it is not the absolute temperature that is hazardous for microring-functionality; rather, it is the relative changes in temperature during active operation of the optical link.

Resolutions to this problem can be classified into two categories: 1) solutions that reduce the thermal dependence of the microring resonator (denoted as “athermal” solutions), and 2) solutions that actively maintain the local temperature of the microring resonator (denoted as “control-based” solutions). In general, a significant advantage of athermal solutions is that they require no active power consumption to implement. The disadvantages of athermal solutions is that they have difficult fabrication, either though the incorporation of non-CMOS materials, or additional photonic structures. In contrast, the only additional structures that control-based systems typically require are integrated heaters and photodetectors, elements that are readily available in a typical silicon photonic platform. However, the main disadvantage of control-based systems is their active power consumption.

Before committing to either class of solutions, further system analysis must be given consideration. Specifically, the laser sources driving the optical link must be evaluated. Currently, in commercial telecommunications links, laser wavelengths are kept locked to a fixed wavelength grid (the ITU standard). However, for the future short-reach interconnects that silicon-photonic devices are envisioned to populate, a different class of low-power laser sources will be required [19, 28–30]. For athermal solutions, it will be required that laser wavelengths are fixed to the resonant wavelengths of the microring resonators, and that the stability of the laser wavelength can be ensured throughout operation of the optical link. In contrast, for control-based solutions no such constraints are needed for the initial wavelengths of the laser source, or for guaranteeing wavelength stability. Fluctuations in wavelength are analogous to fluctuations in temperature; any control system that corrects for temperature changes will correspondingly be able to correct for fluctuations in wavelength as well. Ultimately, when considering the larger system design, any power required to stabilize the laser source must be included when weighing the advantages and disadvantages of these two classes of solutions.

3 Athermal devices

The goal of athermalizing silicon microring-based devices is to significantly decrease the temperature-dependence of the microring resonance (the use of the term “athermal” is somewhat of a misnomer because the temperature dependence is never completely eliminated, just reduced to a tolerable level). The two dominant techniques for achieving athermalization is the use of materials with negative thermo-optic coefficients (silicon has a positive thermo-optic coefficient) in waveguide claddings, and embedment of the microring in a thermally balanced interferometer.

3.1 Athermalization using negative thermo-optic materials

The concept of using a negative thermo-optic polymer cladding for the athermalization of optical waveguides was first introduced by Kokobun et al. [31], and has since been adapted to silicon microring resonators. The goal of this technique is to produce an aggregate thermo-optic coefficient for the waveguide which is zero, with the thermo-optic coefficient defined as

\[
\frac{\partial n_{\text{eff}}}{\partial T} = \Gamma_{\text{core}} \frac{\partial n_{\text{core}}}{\partial T} + \Gamma_{\text{cladding}} \frac{\partial n_{\text{cladding}}}{\partial T} + \Gamma_{\text{substrate}} \frac{\partial n_{\text{substrate}}}{\partial T}
\]

(3)
where Γ is the modal confinement factors for the core, cladding, and substrate, as specified [32]. The modal confinement and negative thermo-optic coefficient of the cladding are engineered to balance the modal confinement and positive thermo-optic coefficients of the core (silicon) and substrate (silicon dioxide). It should be noted that the wavelength dependency is not denoted in Eq. (3), and furthermore, only linear terms have been included. Higher-order wavelength dependencies of the thermo-optic coefficient make it difficult to achieve athermal behavior over a broad wavelength and temperature range [32, 33].

The high thermo-optic coefficient and modal confinement of silicon waveguides makes it difficult to balance Eq. (3) such that the net thermo-optic coefficient is zero. In addition to finding a polymer with a negative thermo-optic coefficient of the same magnitude as silicon's, it is necessary to re-engineer the optical mode such that it is more distributed in the polymer cladding (a larger Γ_{cladding}). Demonstrated methods to achieve this have involved narrowing or thinning the waveguide, or utilizing a slotted structure [24, 26, 34–36]. Figure 3A depicts a typical cross-section of polymer-clad silicon waveguide. As the waveguide is narrowed or thinned, more of the optical mode is distributed in the polymer cladding. Figure 3B quantitatively shows this relationship, and identifies a waveguide dimension for which Eq. (3) balances for a particular wavelength and polymer cladding. In particular, this design was able to reduce the temperature dependent resonance shift (TDWS) to -5 pm/K over a range of 50 K [24]. More recent work has established TDWS as low as 0.2 pm/K [33].

The strict requirement on waveguide dimensions may make it difficult to consistently achieve the desired athermalization given the natural variations present in fabricating silicon photonic structures. A possible resolution to this issue is to use photosensitive materials, such as chalcogenide glasses, to enable the thermo-optic coefficient to be trimmed post-fabrication as necessary [37–39].

In addition to the difficulty in precisely tuning the thermo-optic coefficient of polymers, additional consideration must be given to their compatibility with the CMOS-fabrication processes that are envisioned for the future production of silicon photonic platforms. In particular, polymers are vulnerable to degradation, especially when exposed to high temperatures, as would exist in certain stages of a typical CMOS-production cycle [40]. Additionally, polymers suffer from chemical instability, UV aging, and poor mechanical characteristics [41].

Given these detrimental characteristics of polymers, recent research has focused on the use of titanium dioxide (TiO$_2$) for use as a negative thermo-optic coefficient cladding material [41–44]. TiO$_2$ is one of the few CMOS-compatible materials that has a negative thermo-optic coefficient ($$-1.8 \times 10^{-4}$ \text{ K}^{-1}$$) on the same order as Si [42]. TiO$_2$-clad silicon microring resonators have been demonstrated to have a TDWS <2 pm/K over a range of 5 K, and importantly, have been shown to be capable of current-injection induced resonance shifts (necessary for high-speed modulation) [43].

The aforementioned results show that negative thermo-optic coefficient materials can be effectively used to drastically reduce the thermal susceptibility of silicon microring resonators, making them appropriate for applications in microelectronics. However, the difficulty in the solution lies in the incorporation of said materials, whether polymer or TiO$_2$, into a CMOS compatible fabrication process. Additionally, these configurations must be able to fall within the fabrication tolerances of said processes (or able to be tuned post-fabrication). Finally, it should be noted that the required reduction in the modal
confinement of the core will have consequences on the losses of the microring in straight and bent configurations, negatively impacting such desired attributes as footprint and Q-factor [32].

3.2 Athermalization using an interferometric structure

An alternative to using negative thermo-optic materials is to embed the microring resonator in a thermally matched mach-zhender interferometer (MZI). It has been shown that a silicon MZI can be athermalized by engineering the optical modes in each arm of the MZI. Specifically, the width of the waveguides in the MZI is varied so that the guided mode in each arm of the MZI experiences a different effective thermo-optic coefficient. This is balanced against the length of the arms to produce an overall athermal optical response for the MZI filter [45, 46]. It is possible to adapt this technique to microring resonators by embedding the resonator in one arm of the MZI, as seen in Figure 4A [47].

Figure 4C shows that the structure can be designed such that the thermal sensitivity of the microring resonator cancels the thermal sensitivity of the MZI it is embedded in. However, because the dependence of the phase shift of the MZI with respect to temperature is linear, whereas is it nonlinear for the microring resonator, the resultant optical resonance will slightly deviate and deform across a given temperature range [47]. By embedding a diode structure in the microring (a typical configuration) it has been shown that this device can be utilized as an athermal high-speed electro-optic modulator [48]. Figure 5 shows simulated and measured eye diagrams from said device. As is expected, the slight deformation and deviation in the MZI-embedded microring resonator’s optical response across the temperature range sometimes yields atypical electro-optic modulation, albeit, this may be sufficient for some applications.

The advantage of this technique is clear, the introduction of the thermally balanced MZI structure does not require the incorporation of any new layers or materials in the fabrication of the silicon photonic structure. In contrast to the athermal solutions utilizing a negative thermo-optic material, this solution can be readily integrated using current CMOS-fabrication techniques. However, the structure still suffers from susceptibility to fabrication tolerances, and furthermore, increases the footprint of the microring structure. Additionally, it is non-trivial to adapt the technique to larger microring switch fabrics [15].

Figure 4 (A) Schematic of a microring resonator embedded in a thermally engineered MZI, showing the various waveguide lengths and widths. The MZI is highlighted in blue and the microring in red. (B) Typical transmission spectrum for such a device with a 40 µm microring radius. (C) Change in optical path length with temperature for the microring and MZI. The devices are designed to have opposite and equal phase shifts with increase in temperature. Reprinted with permission from Ref. [47] copyright (2010) OSA.
4 Control-based solutions

While athermal solutions work by removing the thermal sensitivity of silicon microring resonators, control-based solutions operate by maintaining the local temperature of the microring resonator throughout the duration of its operation. This is accomplished through the use of an integrated heater localized to the microring resonator. Because cooling solutions (such as peltier coolers) are prohibitively power inefficient, there is no practical method to effectively cool microring resonators. Rather, leveraging the repeated nature of the microring’s optical resonances, the predominant solution is to use integrated heaters to “run the microring hot” during the system initialization. Subsequent decreases or increases in environmental temperature can then be corrected for by increasing and decreasing, respectively, the power delivered to the integrated heater.

In its generalized form, as depicted in Figure 6, control systems require a method to monitor the temperature drift of the microring resonator, a feedback controller to condition the response, and a method to adjust the local temperature of the microring resonator (the integrated heater).

In essence, there are two major components to any control-based solution, the integrated heater controlling the local temperature of the microring resonator, and the control-system driving the integrated heater. The characteristics of each of these components, including the power consumption and ease of implementation, can be analyzed separately.

4.1 Integrated heaters

Integrated heaters are resistive elements and are typically constructed from nichrome, titanium, or doped silicon materials. Running current through these resistive structures generates heat, which can be used to tune the local temperature of the microring resonator. A noted alternative, available for carrier-injection microring modulators, is to adjust the bias current of the diode junction to directly heat the microring resonator [27, 49, 50]. This technique was used to implement the first control system for thermally stabilizing a microring resonator for data applications [27]. However, while effective, bias tuning has a limited temperature tuning range [49], and was found to have deleterious effects on the generated optical modulation [27]. The preferred solution is to use an integrated heater to separate the high-speed electrical operation of the microring resonator from its (relatively) low-speed thermal stabilization.

The critical metrics for integrated heaters are their tuning efficiency and their tuning speed. While the tuning
efficiency is typically given in (mW/nm) or (mW/GHz), a more universal metric is to express the tuning efficiency as the power required to tune the microring resonator by one free-spectral-range (FSR). The (mW/nm) metric increases with increasing microring size, however, because the FSR of the microring also correspondingly decreases, the (mW/FSR), also denoted as (mW/2π), will remain relatively constant across varying microring sizes [51]. This is useful for comparing tuning efficiency results of integrated heaters on microring resonators of different sizes.

The cross-sections in Figure 7, depicts the normal configuration for integrated heaters, whereby a thermally grown SiO₂ layer of ~1 µm separates the metal heater from the silicon waveguide [15]. The separation between the heater and silicon waveguide is required to protect the optical mode (Figure 7A). The tuning efficiency is not optimal as a consequence of the separation, as the generated heat has to diffuse from the point-like source of the heater down to the silicon waveguide (Figure 7B). While this configuration is the easiest to implement in fabrication, demonstrated tuning efficiencies are limited, with most results ranging around ~100 mW/FSR [15, 52–54], and the best demonstration at ~42 mW/FSR with a tuning speed of 14 µs [55]. These tuning efficiencies may be sufficient for some applications, but for the applications with the most stringent requirements on interconnect power consumption an improved tuning efficiency will be required. Demonstrations have shown that the tuning efficiency can be improved by either locating the integrated heater closer to the microring resonator or by improving the thermal isolation of the microring.

There is an inherent difficulty of locating the integrated heater closer to the microring resonator without causing the optical mode to incur additional scattering loss. A solution to resolving this problem is to utilize a microdisk resonator (functionality equivalent to a microring resonator) and place the integrated heater within the interior of the resonator. However, microdisk structures also support additional optical modes which corrupt the FSR of the resonator. The use of adiabatic microring resonators merges the benefits of microring and microdisk structures, allowing interior connections to the resonator while suppressing spurious optical modes and maintaining a small footprint [56]. Figure 8A depicts the form factor of an adiabatic microring resonator, and the direct integration of a heater within the resonator (Figure 8B). Leveraging the intimate placement of the heater, tuning powers as low as ~20 mW/FSR with tuning speeds as fast as ~1 µs were demonstrated [57]. Additionally, it was shown that adiabatic microring modulators could be fabricated [58]. Modulators with interior integrated heaters have been shown to be able to produce error-free 10 Gb/s modulation across a 60 K temperature tuning range, with comparable tuning efficiencies [59].

Another method to improve the tuning efficiency of integrated heaters is to increase the thermal isolation of microring resonators. Ordinarily, much of the heat generated by the integrated heater is dissipated into the surrounding oxide and substrate. To prevent this, air trenches can be etched around the resonator structure, increasing its thermal isolation from the surrounding environment (Figure 9A). Using this technique, tuning powers of 21 mW/FSR with tuning time constants <10 µs were demonstrated [61].

Further improvements in tuning efficiency can be obtained by completely thermally isolating the resonator structure from the silicon substrate (Figure 9B). The particulars of the nanofabrication technique to achieve this physical isolation differ, and can utilize either topside silicon undercut-etching [25, 60], or backside

![Figure 7](image_url)

Figure 7 Heater and waveguide design for thermal and optical efficiency: (A) the optical mode is separated from the heater to avoid absorption while (B) maintaining enough proximity to couple heat into the waveguide. Reprinted with permission from Ref. [15], copyright (2008) OSA.
however, as environmental temperature fluctuations are likely to be above the ~ms regime [63], making undercut integrated heaters appropriate for thermal stabilization systems. However, it should be noted that increasing the thermal impedance of the microring resonator renders it more susceptible to optical bistability effects, which can have deleterious effects on microring modulation [64, 65].

4.2 Methods for control-based solutions

In order for an integrated heater to effectively stabilize the temperature of a microring resonator it must be interfaced with control circuitry. In addition to thermally stabilizing the microring resonator, this control circuitry should be able to initialize the optical link by aligning the relevant microring resonators with their corresponding laser wavelengths (a process known as wavelength-locking).

The general scheme of this control system would be to utilize some sensing mechanism to ascertain thermal drifts in the microring, denoted as an error signal, and a close-looped feedback controller to condition the error and adjust the voltage on the integrated heater. The feedback controller in any implemented control system is likely to be some digital or analog manifestation of a proportional-integral-derivative (PID) controller, a robust and simple method of achieving closed-loop feedback control [27]. However, there is no clear consensus as to what the best method to monitor the drift of the microring resonator is. The ideal solution is one that is low-cost and energy-efficient, does not require additional photonic structures, is compatible with the WDM implementation of microring resonators, immune to fluctuations in laser power, and implementable for either passive microring resonators or active components such as microring modulators.

Direct monitoring of the microring resonator temperature has been demonstrated [58], however, temperature sensors may be too slow and they have not yet been demonstrated working successfully in a control system. Rather, the predominant solutions rely on

Figure 8 (A) FD-TD simulation of an adiabatic microring resonator. (B) Diagram of an adiabatic microring resonator with integrated heaters. Reprinted with permission from Ref. [57], copyright (2009) OSA.

Figure 9 (A) Cross section of the resonator waveguide with air trenches. (B) Cross section of the resonator waveguide with undercuts beneath the waveguides. Reprinted with permission from Ref. [60], copyright (2010) OSA.
indirectly monitoring drifts in the microring resonator. For instance, one example utilizes an infrared camera to image scattered light, however, this method will likely be difficult to scale and implement in a cost-effective and compact manner [66].

Several methods utilize the optical power of the signal to infer drifts in the microring resonator. It was shown that wavelength-locking and stabilization could be achieved by algorithmically searching for the point of minimum power transmission of a passive microring resonator [67]. While effective, it remains to be seen whether the FPGA-implementation can be translated to simple low-power circuitry, and additionally, the technique may be vulnerable to Fabry-Perot artifacts in the optical path.

Additionally, it has been shown that monitoring the optical power of the generated data signal is sufficient for stabilizing microring modulators [27]. This technique relies on the fact that an on-off-keyed (OOK) signal will have a lower mean power than a non-modulated signal. Figure 10 illustrates this by mapping the wavelength spectrum (on a drop-port photodiode) of the modulated waveform with its corresponding eye diagrams. Monitoring the optical signal on the drop port of the microring modulator eliminates the need for a power tap and yields the system WDM compatibility [68]. This method was shown to maintain the error-free performance of a microring modulator amidst thermal fluctuations that would normally render it inoperable. Monitoring the mean modulated power is an effective method because it can be implemented using low-speed (and hence low-cost and energy-efficient) circuitry and a low-speed, weak photodiode. However, it is susceptible to fluctuations in laser power and is not applicable to passive resonators.

A departure from monitoring the mean modulated power of the signal is to directly monitor the bit-error-rate (BER) of the generated data stream [69]. Demonstrated results showed wavelength locking and thermal stabilization of the modulator over a range of 32 K. By directly monitoring and optimizing the BER of the modulator the method controls microring modulator drift according to the most important application metric: the quality of the generated data. However, in contrast to optical power monitoring [68], monitoring of the BER is much more complex, requiring more circuitry (operating at a speed equivalent to the generation of the data) and high-speed receivers. This has consequences on the ease of implementation and overall power-consumption of the system. In addition, like [68], this method is only applicable to microring modulators, not microrings implemented as switches or filters.

The difficulty in finding an efficient and straightforward method for wavelength-locking and stabilizing resonators is a result of the symmetry of the microring’s optical resonance. A similar engineering problem is faced when locking the wavelength of a laser to a fixed reference gas cavity, which also possesses a symmetrical optical resonance. For that scenario, the common and established method has been to create an anti-symmetric error signal (a derivative of the optical response) centered about the resonant wavelength [70]. Similarly, the generation of an anti-symmetric error signal would greatly ease the task of locking and stabilizing microring resonators.

One method to produce this desired error signal is to place the microring in an interferometric structure and utilize homodyne detection [71]. While meeting many metrics of the ideal solution, such as its simplicity and WDM compatibility, the introduction of the interferometric structure may be difficult to implement with some configurations of microring resonators, such as more complicated microring switch routers [15].

An alternative for generating the anti-symmetric error signal is to use a dithering signal [72]. Figure 11 illustrates the concept of dithering, whereby a small modulation is applied to the resonator to produce a small modulation.
of the optical signal. The generated signal will either be in-, or out-of-phase with the driving signal, depending on which side of the resonance the laser is offset. By mixing the modulated optical signal with the driving dithering signal this information can be recovered as shown in Eq. (4), where \(f_D \) is the frequency of the dithering signal, and \(\phi \) is the relative phase (0 or \(\pi \)) of the modulated optical signal.

\[
\cos(f_D t)\cos(f_D t + \phi) = \frac{1}{2} \left[\cos(2f_D t + \phi) + \cos(\phi) \right]
\]

The higher harmonic can be filtered, leaving the sign of the DC component \(\{\cos(\phi)\} \) term as an indication of the location of the resonance relative to the optical signal. Figure 12 depicts the experimental implementation when applying the dithering signal thermally. With a thermal dithering magnitude as small as 0.1 K, and as slow as 1-kHz, it is possible to wavelength lock and thermally stabilize a passive microring resonator. A consequence of the dithering is an intrinsic reduction in the extinction ratio of the microring resonator, however, this was shown to be relatively small and the impact on the performance of the microring should be negligible [72].

The use of a dithering signal has several advantages over the previous methods. It may be one of the simplest methods to implement as it relies on low-speed and power-efficient circuitry. It is immune against fluctuations in laser power, compatible with WDM configurations, and robust against fabry-perot artifacts. Most importantly, it does not require additional photonic structures, making it readily implementable on more complicated microring structures, utilizing either drop-port photodiodes or in-situ waveguide photodetectors [73]. While current demonstrations show the utility of anti-symmetric error signals for passive microring resonators, methods can be developed to adapt them to microring modulators as well [71].

5 Conclusion

We have comprehensively surveyed the current athermal and control-based solutions for resolving the thermal challenges facing microring-based devices. While the zero-power consumption characteristic of athermal solutions is ideal, their difficulty in nanofabrication and/or incorporation of non-CMOS materials may prevent them from ever proliferating within a large-scale silicon photonics platform. Additionally, a full system analysis would have to give consideration to the power required to thermally stabilize the laser source, as athermal devices will only work on a rigidly fixed wavelength grid.

Control-based solutions have demonstrated the full gambit of functionality, showing the ability to wavelength-lock and thermally stabilize both passive and active microring-based devices. However, a major concern lies in their active power consumption, which may possibly null the benefits in energy-efficiency achieved by using microring-based devices. An energy-efficient control-based solution will require that both the circuitry and the integrated heater have low active power consumption.

When implemented in proper CMOS circuitry it is likely that the power consumption of the control system can be reduced to a sufficient level. For example, for the method utilizing power monitoring [68], it is forecasted that a CMOS implementation would have a \(\sim 25 \) fJ/bit
power consumption (at a 10 Gb/s data rate). CMOS imple-
mentation of the dithering method [72] would require
building further upon this circuitry, but likely keep power
consumption below 100 fJ/bit. Similarly, it is forecasted
that the BER monitoring method [69] would consume only
55 fJ/bit (at 10 Gb/s).

Of significant concern is the power consumption of the
integrated heaters. If it is indeed required to tune microring
resonators over a full FSR the integrated heaters would be
the dominant source of power consumption in the optical
link. However, current system designs suggest that such
large tuning ranges are unnecessary. Advances in silicon
photonic fabrication have been able to control wafer and
etch tolerances to produce relatively evenly spaced WDM
microring arrays [74]. In evenly channel-spaced WDM
microring arrays, no microring will need to be initially
tuned beyond one channel spacing length. In addition,

following large temperature swings, channel assignments
can be reshuffled to minimize the aggregate tuning needed
[21], potentially reducing the required power consumption
of the integrated heaters to values <100 fJ/bit (at 10 Gb/s)
[69]. More accurate estimates of power consumption may
only arrive with further progress in the development and
implementation of control systems. However, another
consideration that requires equal attention are the tem-
perature parameters of the environment, specifically the
magnitude and bandwidth of thermal fluctuations afflict-
ing microring-based devices [63]. Better definition of these
parameter-bounds will enable a more accurate assess-
ment of the power-consumption of control systems.

Received May 13, 2013; accepted August 12, 2013; previously
published online September 11, 2013

References

systems based on silicon photonic interconnects. Proc IEEE

for optical access networks. Proc IEEE Group IV Photonics, San

CL. Passive photonics in an unmodified CMOS technology
with no post-processing required. IEEE Photonic Tech L

Shafiiha R, Feng J, Feng D, Krishnamoorthy AV, Asghari M.
Low loss shallow-ridge silicon waveguides. Opt Express

resonator coupled multimode-interference-based waveguide

low RF power, 10 Gb/s silicon Mach-Zhender modulator. Opt

[7] Cheung STS, Guan B, Djordjevic SS, Okamoto K, Yoo SJ.
Low-loss and high contrast silicon-on-insulator (SOI) arrayed
waveguide gratings. Proc Conference on Lasers and Electro-
Optics, San Jose, 2012.

K, Osgood R. 10 Gb/s Error-free operation of all-silicon
ion-implanted-waveguide photodiodes at 1.55µm. IEEE

YA. CMOS-integrated high-speed MSM germanium waveguide

[10] Xu Q, Fattal D, Beausoleil RG. Silicon microring resonators with

P, Lepage G, Van Hoovels N, Ablsi P, Van Campenhout J.
Comparison of silicon ring modulators with interdigitated and
lateral PN junctions. IEEE J Sel Top Quant 2013;19(2):
Article ID: 7900308.

[13] Chen L, Lipson M. Ultra-low capacitance and high-speed,
germanium photodetectors on silicon. Opt Express

[14] Biberman A, Lira HLR, Padmaraju K, Ophir N, Chan J, Lipson M,
Bergman K. Broadband silicon photonic electro-optic switch
for photonic interconnection networks. IEEE Photonic Tech L

A, Bergman K, Lipson M. Optical ×4 hitless silicon
router for optical Networks-on-Chip (NoC). Opt Express

Cunningham JE, Krishnamoorthy AV. 25Gb/s 1V-driving CMOS
ring modulator with integrated thermal tuning. Opt Express

modulators with enhanced electro-optical efficiency. Proc

[18] Lee BG, Small BA, Xu Q, Lipson M, Bergman K. Charac-
terization of a ×4 ×4 Gb/s parallel electronic bus to WDM
optical link silicon photonic translator. IEEE Photonic Tech L

microring link for high-bandwidth-density, low-power chip

silicon ring modulators for analog optical links. Opt Express

link-level design tradeoffs for integrated photonics

