Crystal structure of rel-(2R,3S)-2-bromomethyl-3-phenyl-3,4-dihydro-2H-pyrrole 1-oxide, C₁₁H₁₂BrNO

W. Frey, M. Gulla and V. Jäger*
Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569 Stuttgart, Germany

Received April 28, 2006, accepted and available on-line May 15, 2006; CCDC no. 1267/1776

Abstract
C₁₁H₁₂BrNO, orthorhombic, Pccn (no. 56), a = 13.1274(7) Å, b = 23.309(1) Å, c = 6.995(1) Å, V = 2140.4 Å³, Z = 8, Rₑ(F) = 0.065, wRₑ(F²) = 0.207, T = 293 K.

Source of material
The title compound has been obtained by bromocyclization of 3-phenyl-4-pentenal oxime [1-7]. The two diastereoisomers (ratio 40:60) were separated by column chromatography (ethyl acetate/methanol), whereby crystallization of the major isomer from dichloromethane furnished the title nitrene in the form of colorless crystals (m.p. 398-401 K).

Discussion
The pyrroline ring system has an envelope conformation, where C2 is situated out-of-plane. Both ring systems of the molecule have a nearly perfect perpendicular orientation of 88.9(2)° (figure, top). The double bond N1=C4 is clearly characterized by a distance of 1.287(3) Å. The N—O distance of the neighboring N-oxide function is 1.293(5) Å. In the view of the cell plot we observe alternate polar and non-polar channels along the c axis. The non-polar channels are built up by the phenyl moieties and the polar ones by the bromomethyl-nitrone fragments. There are also polar layers in the a,c plane along the b axis established by the N-oxide functions (figure, bottom).

Table 1. Data collection and handling.

Crystal:	colorless block, size 0.15 x 0.20 x 0.50 mm
Wavelength:	Cu Kα radiation (1.54178 Å)
μ:	49.61 cm⁻¹
Diffractometer, scan mode:	Siemens P4, ω
2θmax:	135.96°*
N(hkl)measured, N(hkl)unique:	2505, 1875
Criterion for I₁₀₀, N(hkl)refined:	I₁₀₀ > 2 σ(I₁₀₀), 1449
Programs:	SHELXS-97 [8], SHELXL-97 [9], SHELXTL-Plus [10]

Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U₁₁0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>8e</td>
<td>0.4645</td>
<td>0.5698</td>
<td>-0.0710</td>
<td>0.061</td>
</tr>
<tr>
<td>H(2)</td>
<td>8e</td>
<td>0.5986</td>
<td>0.6478</td>
<td>-0.2383</td>
<td>0.057</td>
</tr>
<tr>
<td>H(3A)</td>
<td>8e</td>
<td>0.5829</td>
<td>0.5429</td>
<td>-0.4369</td>
<td>0.076</td>
</tr>
<tr>
<td>H(3B)</td>
<td>8e</td>
<td>0.6791</td>
<td>0.5833</td>
<td>-0.4208</td>
<td>0.076</td>
</tr>
<tr>
<td>H(4)</td>
<td>8e</td>
<td>0.7114</td>
<td>0.5062</td>
<td>-0.1937</td>
<td>0.080</td>
</tr>
<tr>
<td>H(5A)</td>
<td>8e</td>
<td>0.5122</td>
<td>0.6086</td>
<td>0.2193</td>
<td>0.084</td>
</tr>
<tr>
<td>H(5B)</td>
<td>8e</td>
<td>0.4681</td>
<td>0.6551</td>
<td>0.0843</td>
<td>0.084</td>
</tr>
<tr>
<td>H(7)</td>
<td>8e</td>
<td>0.5013</td>
<td>0.7150</td>
<td>-0.4017</td>
<td>0.068</td>
</tr>
<tr>
<td>H(8)</td>
<td>8e</td>
<td>0.3632</td>
<td>0.7412</td>
<td>-0.5387</td>
<td>0.080</td>
</tr>
<tr>
<td>H(9)</td>
<td>8e</td>
<td>0.2439</td>
<td>0.6742</td>
<td>-0.5675</td>
<td>0.077</td>
</tr>
<tr>
<td>H(10)</td>
<td>8e</td>
<td>0.2581</td>
<td>0.5808</td>
<td>-0.5707</td>
<td>0.074</td>
</tr>
<tr>
<td>H(11)</td>
<td>8e</td>
<td>0.3953</td>
<td>0.5538</td>
<td>-0.3849</td>
<td>0.063</td>
</tr>
</tbody>
</table>

* Correspondence author (e-mail: jager.ioc@po.uni-stuttgart.de)
Table 3. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>Site</th>
<th>X</th>
<th>y</th>
<th>ζ</th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)</td>
<td>Se</td>
<td>0.64818(6)</td>
<td>0.67571(3)</td>
<td>0.1394(1)</td>
<td>0.0918(6)</td>
<td>0.0904(6)</td>
<td>0.0910(7)</td>
<td>0.0062(3)</td>
<td>-0.0227(4)</td>
<td>-0.0335(4)</td>
<td></td>
</tr>
<tr>
<td>N(1)</td>
<td>Se</td>
<td>0.6112(3)</td>
<td>0.5451(2)</td>
<td>-0.0317(6)</td>
<td>0.051(2)</td>
<td>0.059(2)</td>
<td>0.054(3)</td>
<td>0.001(2)</td>
<td>-0.012(2)</td>
<td>0.006(2)</td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>Se</td>
<td>0.6199(3)</td>
<td>0.5214(2)</td>
<td>0.1346(5)</td>
<td>0.079(2)</td>
<td>0.079(2)</td>
<td>0.071(3)</td>
<td>-0.003(2)</td>
<td>-0.024(2)</td>
<td>0.022(2)</td>
<td></td>
</tr>
<tr>
<td>C(1)</td>
<td>Se</td>
<td>0.5302(3)</td>
<td>0.5895(2)</td>
<td>-0.0617(6)</td>
<td>0.045(2)</td>
<td>0.065(2)</td>
<td>0.042(3)</td>
<td>0.005(2)</td>
<td>0.000(2)</td>
<td>0.006(2)</td>
<td></td>
</tr>
<tr>
<td>C(2)</td>
<td>Se</td>
<td>0.5559(3)</td>
<td>0.6138(2)</td>
<td>-0.2572(6)</td>
<td>0.046(2)</td>
<td>0.057(2)</td>
<td>0.040(2)</td>
<td>0.003(2)</td>
<td>0.001(2)</td>
<td>0.001(2)</td>
<td></td>
</tr>
<tr>
<td>C(3)</td>
<td>Se</td>
<td>0.6227(4)</td>
<td>0.5666(3)</td>
<td>-0.3507(7)</td>
<td>0.055(2)</td>
<td>0.087(4)</td>
<td>0.048(3)</td>
<td>0.014(2)</td>
<td>0.001(2)</td>
<td>-0.008(2)</td>
<td></td>
</tr>
<tr>
<td>C(4)</td>
<td>Se</td>
<td>0.6592(4)</td>
<td>0.5331(2)</td>
<td>-0.1864(9)</td>
<td>0.056(3)</td>
<td>0.070(3)</td>
<td>0.075(4)</td>
<td>0.017(2)</td>
<td>-0.012(2)</td>
<td>-0.013(3)</td>
<td></td>
</tr>
<tr>
<td>C(5)</td>
<td>Se</td>
<td>0.5251(4)</td>
<td>0.6303(3)</td>
<td>0.1035(8)</td>
<td>0.072(3)</td>
<td>0.093(4)</td>
<td>0.045(3)</td>
<td>0.014(3)</td>
<td>0.002(2)</td>
<td>-0.003(3)</td>
<td></td>
</tr>
<tr>
<td>C(6)</td>
<td>Se</td>
<td>0.4644(3)</td>
<td>0.6316(2)</td>
<td>0.3744(6)</td>
<td>0.052(2)</td>
<td>0.051(2)</td>
<td>0.035(2)</td>
<td>0.005(2)</td>
<td>0.003(2)</td>
<td>-0.000(2)</td>
<td></td>
</tr>
<tr>
<td>C(7)</td>
<td>Se</td>
<td>0.4531(4)</td>
<td>0.6876(2)</td>
<td>0.4357(7)</td>
<td>0.069(3)</td>
<td>0.050(2)</td>
<td>0.050(3)</td>
<td>0.000(2)</td>
<td>0.003(2)</td>
<td>-0.002(2)</td>
<td></td>
</tr>
<tr>
<td>C(8)</td>
<td>Se</td>
<td>0.3701(4)</td>
<td>0.7034(2)</td>
<td>0.5478(8)</td>
<td>0.087(4)</td>
<td>0.064(3)</td>
<td>0.050(3)</td>
<td>0.027(3)</td>
<td>0.003(3)</td>
<td>0.011(2)</td>
<td></td>
</tr>
<tr>
<td>C(9)</td>
<td>Se</td>
<td>0.2985(4)</td>
<td>0.6635(2)</td>
<td>0.3596(7)</td>
<td>0.067(3)</td>
<td>0.080(3)</td>
<td>0.045(3)</td>
<td>0.024(3)</td>
<td>-0.008(2)</td>
<td>0.001(2)</td>
<td></td>
</tr>
<tr>
<td>C(10)</td>
<td>Se</td>
<td>0.3074(4)</td>
<td>0.6077(2)</td>
<td>0.5376(7)</td>
<td>0.055(2)</td>
<td>0.077(3)</td>
<td>0.052(3)</td>
<td>0.004(2)</td>
<td>-0.012(2)</td>
<td>-0.005(2)</td>
<td></td>
</tr>
<tr>
<td>C(11)</td>
<td>Se</td>
<td>0.3897(4)</td>
<td>0.5916(2)</td>
<td>-0.4260(7)</td>
<td>0.052(2)</td>
<td>0.059(2)</td>
<td>0.046(3)</td>
<td>0.001(2)</td>
<td>-0.004(2)</td>
<td>0.001(2)</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgments.
For financial support of this work we are grateful to Fonds der Chemischen Industrie, to Bayer AG (Wuppertal), and to the EU COST D13 action (Molecules for Health).

References