Crystal structure of methyl-4-(4-ethylenzamido)-
2-sulfamoylbenzoate, C₁₇H₁₈N₂O₅S

Mei-Yi Wang*
The North University for Ethics, College of Chemistry and Chemical Engineering, Yinchuan 750021, P. R. China

Received October 29, 2008, accepted and available on-line January 28, 2009; CCDC no. 1267/2494

Abstract
C₁₇H₁₈N₂O₅S, triclinic, P₁̅ (no. 2), a = 8.650(3) Å, b = 8.832(3) Å, c = 11.619(4) Å, α = 76.445(5)°, β = 79.684(5)°, γ = 78.770(5)°, V = 838.1 Å³, Z = 2, Rₑ(F) = 0.052, wRₑ(F) = 0.052, S(l) = 1.2 t/eq(C)]. The H atoms bonded to C and Ν atoms were positioned geometrically and refined using a riding model [aliphatic (H) = 1.5 t/eq(O)], the H atoms bonded to O atoms were located in difference Fourier maps and refined with Ω(O) = 0.85(2) Å and d(N—H) = 0.86 Å, t/eq(C)]. The H atoms bonded to C and Ν atoms were positioned geometrically and refined using a riding model. The H atoms bonded to O atoms were located in difference Fourier maps and refined with Ω(O) = 0.85(2) Å and d(N—H) = 0.86 Å, t/eq(C)].

The benzene ring in the title crystal structure is planar. The carboxamide moiety is coplanar with the benzene ring [dihedral angle 176.2(3)°]. The interatomic distance for C9—O1 is 1.218(4) Å, revealing a normal C=O double bond. In addition, the X-ray data also indicate intermolecular and intramolecular H-bonding interactions.

Table 1. Data collection and handling.

Crystal	colorless cubbed, size 0.14 × 0.24 × 0.26 mm
Wavelength	Mo Kα radiation (0.71073 Å)
μ	2.24 cm⁻¹
Diffractometer, scan mode	Broker SMART CCD, φ/ω
2Θmax	50.04°
N(hkl)measured, N(hkl)unique	4276, 2943
Criterion for lobs, N(lobs)	lobs > 2σ(lobs), 2106
N(param)refined	240
Programs	SHELXS-97 [5], SHELXL-97 [6], SHELXTL [7]

Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₂</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7077</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7777</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7777</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7777</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₂</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7077</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7777</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7777</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.7777</td>
<td>-0.0955</td>
<td>0.4142</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.8090</td>
<td>-0.1151</td>
<td>0.3685</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1C)</td>
<td>2i</td>
<td>0.8062</td>
<td>0.0326</td>
<td>0.4213</td>
<td>0.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion
Amides are very useful starting materials for the synthesis of various bioactive molecules [2]. These compounds are also widely applied in medicine [3] and agriculture [4]. In view of these facts and in continuation of our interest in the agriculture, we attempted to synthesize a series of amide derivatives, some of which have comparatively high fungicidal activity.

* e-mail: xinghai.liu@yahoo.com.cn
Table 3. Continued.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U12</th>
<th>U13</th>
<th>U23</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)</td>
<td>2i</td>
<td>0.2196(3)</td>
<td>0.5720(3)</td>
<td>1.3010(2)</td>
<td>0.080(2)</td>
<td>0.055(2)</td>
<td>0.054(2)</td>
<td>-0.015(1)</td>
<td>-0.015(1)</td>
<td>-0.023(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2i</td>
<td>0.3884(3)</td>
<td>0.6221(3)</td>
<td>1.1085(2)</td>
<td>0.039(1)</td>
<td>0.061(2)</td>
<td>0.095(2)</td>
<td>-0.023(1)</td>
<td>0.012(1)</td>
<td>-0.047(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2i</td>
<td>-0.1224(3)</td>
<td>0.6283(3)</td>
<td>1.2637(3)</td>
<td>0.065(2)</td>
<td>0.043(2)</td>
<td>0.085(2)</td>
<td>-0.011(1)</td>
<td>0.024(1)</td>
<td>-0.023(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2i</td>
<td>-0.1954(3)</td>
<td>0.3957(3)</td>
<td>1.3344(2)</td>
<td>0.059(2)</td>
<td>0.060(2)</td>
<td>0.077(2)</td>
<td>-0.025(1)</td>
<td>0.029(1)</td>
<td>-0.025(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2i</td>
<td>0.3424(3)</td>
<td>0.1799(3)</td>
<td>0.9405(2)</td>
<td>0.033(1)</td>
<td>0.037(1)</td>
<td>0.053(2)</td>
<td>-0.012(1)</td>
<td>-0.001(1)</td>
<td>-0.019(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2i</td>
<td>0.1305(4)</td>
<td>0.7770(3)</td>
<td>1.1359(3)</td>
<td>0.053(2)</td>
<td>0.036(2)</td>
<td>0.065(2)</td>
<td>-0.012(1)</td>
<td>0.005(2)</td>
<td>-0.015(2)</td>
</tr>
<tr>
<td>S(1)</td>
<td>2i</td>
<td>0.8087(9)</td>
<td>-0.0781(8)</td>
<td>0.4274(6)</td>
<td>0.144(6)</td>
<td>0.121(5)</td>
<td>0.129(6)</td>
<td>0.019(4)</td>
<td>-0.049(5)</td>
<td>-0.053(5)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2i</td>
<td>0.8401(8)</td>
<td>-0.1614(7)</td>
<td>0.5433(5)</td>
<td>0.130(5)</td>
<td>0.100(4)</td>
<td>0.090(4)</td>
<td>-0.039(4)</td>
<td>0.015(4)</td>
<td>-0.017(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2i</td>
<td>0.6953(5)</td>
<td>-0.0918(5)</td>
<td>0.6274(4)</td>
<td>0.067(3)</td>
<td>0.069(3)</td>
<td>0.087(3)</td>
<td>-0.015(2)</td>
<td>0.018(2)</td>
<td>-0.044(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2i</td>
<td>0.5821(5)</td>
<td>-0.1807(5)</td>
<td>0.6859(4)</td>
<td>0.065(3)</td>
<td>0.049(2)</td>
<td>0.086(3)</td>
<td>-0.006(2)</td>
<td>-0.003(2)</td>
<td>-0.039(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2i</td>
<td>0.4660(4)</td>
<td>-0.1308(4)</td>
<td>0.7703(3)</td>
<td>0.049(2)</td>
<td>0.040(2)</td>
<td>0.071(2)</td>
<td>-0.011(2)</td>
<td>-0.005(2)</td>
<td>-0.020(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2i</td>
<td>0.4575(4)</td>
<td>0.0143(4)</td>
<td>0.7983(3)</td>
<td>0.039(2)</td>
<td>0.035(2)</td>
<td>0.044(2)</td>
<td>-0.008(1)</td>
<td>-0.010(1)</td>
<td>-0.012(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2i</td>
<td>0.5694(5)</td>
<td>0.1050(4)</td>
<td>0.7387(3)</td>
<td>0.064(2)</td>
<td>0.053(2)</td>
<td>0.070(3)</td>
<td>-0.026(2)</td>
<td>0.011(2)</td>
<td>-0.034(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2i</td>
<td>0.6867(5)</td>
<td>0.0530(6)</td>
<td>0.6550(4)</td>
<td>0.075(3)</td>
<td>0.084(3)</td>
<td>0.103(4)</td>
<td>-0.042(3)</td>
<td>0.038(3)</td>
<td>-0.054(3)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2i</td>
<td>0.3255(4)</td>
<td>0.0631(4)</td>
<td>0.8885(3)</td>
<td>0.043(2)</td>
<td>0.034(2)</td>
<td>0.040(2)</td>
<td>-0.012(1)</td>
<td>-0.006(1)</td>
<td>-0.009(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2i</td>
<td>0.5238(3)</td>
<td>0.2509(3)</td>
<td>1.0222(3)</td>
<td>0.032(2)</td>
<td>0.032(2)</td>
<td>0.039(2)</td>
<td>-0.006(1)</td>
<td>-0.005(1)</td>
<td>-0.010(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>2i</td>
<td>0.2650(3)</td>
<td>0.3842(3)</td>
<td>1.0511(3)</td>
<td>0.032(2)</td>
<td>0.036(2)</td>
<td>0.045(2)</td>
<td>-0.012(1)</td>
<td>-0.001(1)</td>
<td>-0.012(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>2i</td>
<td>0.1635(3)</td>
<td>0.4605(3)</td>
<td>1.1307(3)</td>
<td>0.035(2)</td>
<td>0.030(2)</td>
<td>0.040(2)</td>
<td>-0.008(1)</td>
<td>-0.005(1)</td>
<td>-0.009(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>2i</td>
<td>0.0200(4)</td>
<td>0.4080(4)</td>
<td>1.1848(3)</td>
<td>0.035(2)</td>
<td>0.036(2)</td>
<td>0.041(2)</td>
<td>-0.008(1)</td>
<td>-0.004(1)</td>
<td>-0.008(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2i</td>
<td>-0.0091(4)</td>
<td>0.2739(4)</td>
<td>1.1569(3)</td>
<td>0.040(2)</td>
<td>0.043(2)</td>
<td>0.054(2)</td>
<td>-0.018(2)</td>
<td>0.004(2)</td>
<td>-0.012(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2i</td>
<td>0.0934(4)</td>
<td>0.1950(4)</td>
<td>1.0792(3)</td>
<td>0.046(2)</td>
<td>0.039(2)</td>
<td>0.053(2)</td>
<td>-0.018(2)</td>
<td>-0.002(2)</td>
<td>-0.017(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>2i</td>
<td>-0.1027(4)</td>
<td>0.4917(4)</td>
<td>1.2639(3)</td>
<td>0.037(2)</td>
<td>0.045(2)</td>
<td>0.046(2)</td>
<td>-0.011(2)</td>
<td>0.000(2)</td>
<td>-0.011(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>2i</td>
<td>-0.3234(5)</td>
<td>0.4655(6)</td>
<td>1.4116(4)</td>
<td>0.067(3)</td>
<td>0.092(3)</td>
<td>0.091(3)</td>
<td>-0.024(3)</td>
<td>0.042(3)</td>
<td>-0.040(3)</td>
</tr>
</tbody>
</table>

References

