Crystal structure of europium arsenate, EuAsO$_4$

Sylvia Golbs, Raul Cardoso-Gil and Marcus Schmidt*

Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

Received March 20, 2009, accepted and available on-line April 2, 2009; CSD no. 409995

Abstract

EuAsO$_4$, tetragonal, $I\bar{4}_{1}$/amd (no. 141), $a = 7.1617(2)$ Å, $c = 6.3750(2)$ Å, $V = 327.0$ Å3, $Z = 4$, $R_g(F) = 0.015$, $wR_{	ext{ref}}(F^2) = 0.031$, $T = 296$ K.

Source of material

EuAsO$_4$ was prepared by heating the stoichiometric mixture of Eu$_2$O$_3$ (ChemPur, 99.9 %) and As$_2$O$_5$ (Alfa Aesar, 99.9 %) in corundum crucibles enclosed in evacuated quartz glass ampoules up to 823 K and annealed at this temperature for about two weeks [1]. Single crystals of EuAsO$_4$ were obtained by endothermic chemical transport reaction with TeCl$_4$ (Aldrich, 99 %) as transport agent [2]. The microcrystalline powder material (600 mg) was enclosed in an evacuated quartz glass tube together with the transport agent (100 mg) and then treated in the temperature range from 1348 K to 1243 K. The absence of impurities was confirmed by EDXS (Phillips XL 30, LaB$_6$ filament, Si (Li) detector, 25 kV).

Experimental details

Lattice parameters were determined by means of powder X-ray diffraction (Huber G670 camera, CoK$_\alpha$, $\lambda = 1.78897$ Å, LaB$_6$ ($a = 4.15692$ Å) as internal standard). The fitting of the peak profile and the refinement of the lattice parameters was carried out with the program WinCSD [3].

Discussion

EuAsO$_4$ crystallizes isomorphously to SmAsO$_4$ [4], DyAsO$_4$ [5], HoAsO$_4$ [2] and LuAsO$_4$ [6] in the xenotime structure type. The europium ion is surrounded by eight oxygen atoms. Six of them belong to different [AsO$_4$] tetrahedra. The [EuO$_6$] polyhedron (bisdisphenoid) can be considered as principal building unit of the structure. These condense by common edges and form interpenetrating chains parallel to [100] and [010]. The chains are interconnected via edge-linked tetrahedra in the direction of [001] forming a three-dimensional framework. Two of the coordinatizing [AsO$_4$] tetrahedra are connected to an isolated [EuO$_6$] polyhedron in equatorial position through common corners and two in axial position of the bisdisphenoid through common edges. These opposite edges are aligned parallel to [001]. The interatomic distances $d(\text{As}—\text{O}) = 1.638$ Å and $d(\text{Eu}—\text{O}) = 2.349 - 2.468$ Å correspond well with the data from related compounds HoAsO$_4$ ($d(\text{As}—\text{O}) = 1.684$ Å, $d(\text{Ho}—\text{O}) = 2.294 - 2.422$ Å [2]) and SmAsO$_4$ ($d(\text{As}—\text{O}) = 1.683$ Å, $d(\text{Sm}—\text{O}) = 2.359 - 2.480$ Å [4]).

Table 1. Data collection and handling.

Crystal:	colorless prism, size 0.033 x 0.037 x 0.040 mm
Wavelength:	Ag K$_\alpha$ radiation (0.56088 Å)
μ:	15.403 cm$^{-1}$
Diffractometer, scan mode:	Rigaku R-AXIS Spider, ϕ-scan
$2\theta_{\text{max}}$:	81.36°
$N(\text{hk}l)/\text{measured}, N(\text{hk}l)/\text{unique}$:	4019, 590
Criterion for $I_{\text{obs}} > 2\sigma(I_{\text{obs}})$:	$I_{\text{obs}} > 2\sigma(I_{\text{obs}})$, 511
Programs:	WinCSD [3], SHELXS-97 [7], SHELX-97 [8], STRUCTURE TIDY [9], DIAMOND [10]

Table 2. Atomic coordinates and displacement parameters (in Å2).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{11}</th>
<th>U_{22}</th>
<th>U_{33}</th>
<th>U_{12}</th>
<th>U_{13}</th>
<th>U_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu(1)</td>
<td>4a</td>
<td>0</td>
<td>44</td>
<td>$\frac{1}{2}$</td>
<td>0.00532(3)</td>
<td>U_{11}</td>
<td>0.00366(4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>As(1)</td>
<td>4b</td>
<td>0</td>
<td>44</td>
<td>$\frac{1}{2}$</td>
<td>0.00493(5)</td>
<td>U_{11}</td>
<td>0.00334(7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O(1)</td>
<td>16k</td>
<td>0</td>
<td>0.0703(1)</td>
<td>0.2050(1)</td>
<td>0.0150(4)</td>
<td>0.0053(3)</td>
<td>0.0063(2)</td>
<td>0</td>
<td>0</td>
<td>$-0.0012(2)$</td>
</tr>
</tbody>
</table>

* Correspondence author (e-mail: marcus.schmidt@cpfs.mpg.de)
Acknowledgments. The authors thank Mrs. Petra Scheppan for EDXS anal-
ysis, Dr. Horst Borrmann and Dr. Yurii Prots for single crystal and powder X-
Ray diffraction experiments.

References

1. Mazhenov, N. A.; Nurgaliev, B. Z.; Muldakhmetov, K. Z.: Scheelite mod-
Chemischen Transport und zur Kristallstruktur von Seltenerd-
Baumgartner, B.; Wölfel, E.: Use of the CSD program package for lattice
335-340.
Sm[AsO₄] im Xenotim-Typ. Z. Anorg. Allg. Chem. 631 (2005) 1799-
1802.
5. Long, F. G.; Stager, C. V.: Low temperature crystal structure of TbAsO₄
Kristallstrukturen von Yttrium Vanadat, Lutetium Phosphat, und
7. Sheldrick, G. M.: SHELXS-97. Program for the Solution of Crystal Struc-
9. Gelato, L. M.; Parthe, E. J.: STRUCTURE TIDY - a computer program to
10. Brandenburg, K.: DIAMOND. Visual Crystal Structure Information Sys-