Crystal structure of hexaqua-(μ₃-methylenedisulphonato)-bis(μ₂-methylenedisulphonato)disamarium(III), Sm₂(H₂O)₆(CH₂O₆S₂)₃

Ming Lin and Zai-Chao Zhang*
Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Department of Chemistry, Huaiyin Teachers College, 111 West Changjiang Road, Huai'an, 223300 Jiangsu, P. R. China

Received April 29, 2009, accepted and available on-line May 6, 2009; CCDC no. 1267/2643

Abstract

C₃H₁₄O₆S₆Sm₂, triclinic, P1̅ (no. 2), a = 9.0017(3) Å, b = 9.2768(4) Å, c = 15.8674(6) Å, α = 74.864(1)°, β = 78.263(1)°, γ = 61.138(1)°, V = 1115.5 Å³, Z = 2, R_{w}^{2}(F) = 0.026, wR_{ref}^{2}(F²) = 0.067, T = 173 K.

Source of material

A mixture of Sm₂O₃ (0.05 mmol), methylenedisulfonic acid (0.16 mmol) and H₂O (10 mL) was sealed in a 25 mL Teflon-lined stainless steel autoclave and heated at 140 °C for 2 days. After the mixture was cooled to room temperature, it was filtrated and the filtrate was slowly evaporated, yielding light yellow crystals of the title compound (83 % based on Sm).

Discussion

Due to the weak coordination strength of monosulfonate ions, most metal complexes of these ligands obtained from aqueous solution are water-coordinated metal sulfonate salts. The coordination chemistry of the sulfonate ion has been less well investigated in comparison with other organic acidato anions such as carbonates and phosphonates [1]. However, by employing disulfonates, which can provide multiple potentially chelating coordination sites, stable networks sustained by sulfonate-metal interactions can be obtained with various dimensionalities [2,3]. The asymmetric unit of the title crystal structure consists of two samarium ions, six coordinating water molecules and three CH₂(SO₃)₂⁻ ligands. Both Sm⁺⁺⁺ are nine-coordinated. Each Sm⁺⁺⁺ is surrounded by six sulfonate O atoms (O₆) and the remaining coordination positions are occupied by coordinating water molecules (O₆w). The bond lengths of Sm—O₆ and Sm—O₆w fall in the range of 2.386(3) - 2.706(4) Å and 2.370(4) - 2.492(3) Å. A CH₂(SO₃)₂⁻ ligand chelates two Sm ions simultaneously by using four of its sulfonate oxygens (O₇, O₈, O₁₀ and O₁₁) into a “paddle-wheel” dimer with an inversion center lying in the middle, and the Sm⋯Sm distance is 5.348(4) Å. Sm₂ ions are chelated and bridged through O₁₃—S₅—O₁₄ and O₁₆—S₆—O₁₈ connectivities into a zigzag chain. The rest CH₂(SO₃)₂⁻ ligand joins the dimer and the chain through two O—S—O bridges (O₁—S₁—O₂ and O₄—S₂—O₅), thus forming a two-dimensional sheet. The three-dimensional structure is stabilized by intricate interlayer hydrogen bonding.

Table 1. Data collection and handling.

Crystal:	light yellow block, size 0.20 x 0.20 x 0.25 mm
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	58.84 cm⁻¹
Diffractometer, scan mode:	Bruker SMART CCD, φ/ω
2θ_max:	51°
hkl_restricted, N(hkl)unique:	13394, 4085
Criterion for Iobs, N(hkl):	I_obs > 2σ(I_obs), 3557
N(param):	316
Programs:	SHELXS-97 [4], SHELXL-97 [5], SHELXTL [6]

Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_11</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>2i</td>
<td>0.3705</td>
<td>0.3764</td>
<td>0.1698</td>
<td>0.012</td>
</tr>
<tr>
<td>H(1B)</td>
<td>2i</td>
<td>0.3639</td>
<td>0.2123</td>
<td>0.2400</td>
<td>0.012</td>
</tr>
<tr>
<td>H(2A)</td>
<td>2i</td>
<td>1.0997</td>
<td>0.1720</td>
<td>0.0346</td>
<td>0.017</td>
</tr>
<tr>
<td>H(2B)</td>
<td>2i</td>
<td>0.8454</td>
<td>0.9576</td>
<td>0.0242</td>
<td>0.017</td>
</tr>
<tr>
<td>H(3A)</td>
<td>2i</td>
<td>0.5709</td>
<td>0.3258</td>
<td>0.5982</td>
<td>0.016</td>
</tr>
<tr>
<td>H(3B)</td>
<td>2i</td>
<td>0.5186</td>
<td>0.3223</td>
<td>0.5087</td>
<td>0.016</td>
</tr>
<tr>
<td>H(19A)</td>
<td>2i</td>
<td>0.7849</td>
<td>0.4464</td>
<td>0.3111</td>
<td>0.039</td>
</tr>
<tr>
<td>H(19B)</td>
<td>2i</td>
<td>0.9101</td>
<td>0.3167</td>
<td>0.2678</td>
<td>0.039</td>
</tr>
<tr>
<td>H(20A)</td>
<td>2i</td>
<td>0.6496</td>
<td>0.8268</td>
<td>0.1814</td>
<td>0.022</td>
</tr>
<tr>
<td>H(20B)</td>
<td>2i</td>
<td>0.4954</td>
<td>0.8463</td>
<td>0.1646</td>
<td>0.022</td>
</tr>
<tr>
<td>H(21A)</td>
<td>2i</td>
<td>0.3990</td>
<td>0.6763</td>
<td>0.1099</td>
<td>0.025</td>
</tr>
<tr>
<td>H(21B)</td>
<td>2i</td>
<td>0.4753</td>
<td>0.7173</td>
<td>0.0289</td>
<td>0.025</td>
</tr>
<tr>
<td>H(22A)</td>
<td>2i</td>
<td>0.8106</td>
<td>-0.3730</td>
<td>0.4485</td>
<td>0.023</td>
</tr>
<tr>
<td>H(22B)</td>
<td>2i</td>
<td>0.7841</td>
<td>-0.3204</td>
<td>0.5291</td>
<td>0.023</td>
</tr>
<tr>
<td>H(23A)</td>
<td>2i</td>
<td>0.1065</td>
<td>0.0448</td>
<td>0.3261</td>
<td>0.025</td>
</tr>
<tr>
<td>H(23B)</td>
<td>2i</td>
<td>0.9861</td>
<td>-0.2552</td>
<td>0.2526</td>
<td>0.025</td>
</tr>
<tr>
<td>H(24A)</td>
<td>2i</td>
<td>1.0852</td>
<td>0.0293</td>
<td>0.3108</td>
<td>0.025</td>
</tr>
<tr>
<td>H(24B)</td>
<td>2i</td>
<td>0.1615</td>
<td>-0.0419</td>
<td>0.2365</td>
<td>0.025</td>
</tr>
</tbody>
</table>

* Correspondence author (e-mail: overloadzz@hotmail.com)
<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U12</th>
<th>U13</th>
<th>U23</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>2i</td>
<td>0.4409(6)</td>
<td>0.2845(6)</td>
<td>0.2146(3)</td>
<td>0.004(2)</td>
<td>0.009(2)</td>
<td>0.012(2)</td>
<td>0.000(2)</td>
<td>0.001(2)</td>
<td>-0.001(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2i</td>
<td>0.931(6)</td>
<td>0.867(6)</td>
<td>-0.007(3)</td>
<td>0.015(3)</td>
<td>0.011(2)</td>
<td>0.015(3)</td>
<td>-0.006(2)</td>
<td>0.004(2)</td>
<td>-0.003(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2i</td>
<td>0.6056(6)</td>
<td>0.2609(6)</td>
<td>0.5309(3)</td>
<td>0.010(3)</td>
<td>0.017(3)</td>
<td>0.012(2)</td>
<td>-0.006(2)</td>
<td>0.002(2)</td>
<td>-0.003(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2i</td>
<td>0.7363(4)</td>
<td>0.2636(4)</td>
<td>0.1475(2)</td>
<td>0.014(2)</td>
<td>0.018(2)</td>
<td>0.021(2)</td>
<td>-0.011(2)</td>
<td>0.006(2)</td>
<td>-0.004(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2i</td>
<td>0.8079(4)</td>
<td>0.0991(4)</td>
<td>0.2263(2)</td>
<td>0.010(2)</td>
<td>0.012(2)</td>
<td>0.010(2)</td>
<td>-0.003(1)</td>
<td>-0.001(1)</td>
<td>-0.001(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2i</td>
<td>0.6151(4)</td>
<td>0.1361(4)</td>
<td>0.0860(2)</td>
<td>0.018(2)</td>
<td>0.020(2)</td>
<td>0.012(2)</td>
<td>-0.001(2)</td>
<td>-0.006(2)</td>
<td>-0.004(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2i</td>
<td>0.5074(5)</td>
<td>0.4995(5)</td>
<td>0.2549(2)</td>
<td>0.028(2)</td>
<td>0.019(2)</td>
<td>0.019(2)</td>
<td>-0.013(2)</td>
<td>-0.001(2)</td>
<td>-0.000(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2i</td>
<td>0.5821(4)</td>
<td>0.2301(4)</td>
<td>0.3531(2)</td>
<td>0.017(2)</td>
<td>0.012(2)</td>
<td>0.015(2)</td>
<td>-0.002(2)</td>
<td>-0.006(2)</td>
<td>-0.001(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2i</td>
<td>0.2887(4)</td>
<td>0.4555(4)</td>
<td>0.3459(2)</td>
<td>0.017(2)</td>
<td>0.021(2)</td>
<td>0.015(2)</td>
<td>-0.001(2)</td>
<td>0.001(2)</td>
<td>-0.003(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2i</td>
<td>0.721(4)</td>
<td>0.7505(4)</td>
<td>-0.0026(2)</td>
<td>0.014(2)</td>
<td>0.022(2)</td>
<td>0.015(2)</td>
<td>-0.010(2)</td>
<td>-0.000(2)</td>
<td>0.000(2)</td>
</tr>
</tbody>
</table>

References