Crystal structure of 3,4-dihydroxy-1,5-dimethyl-2-phenylpyrazolium chloride, [C\textsubscript{11}H\textsubscript{13}N\textsubscript{2}O\textsubscript{2}]Cl

Pascale Lemoinea, Bernard Viessata, Pascal Retailleaub, Jean Daniel Brionc and Alain Bekaeftc

a Laboratoire de Cristallographie et RMN biologiques, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris Descartes, 4, avenue de l’Observatoire, 75270 Paris Cedex 06, France

b Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Service de Cristallographie, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France

c Université de Paris XI, Faculté des Sciences Pharmaceutiques et Biologiques, Laboratoire de Chimie thérapeutique BioCIS, UPRES-A 8076 CNRS, 5, rue J. Clément, 92296 Châtenay-Malabry Cedex, France

Received May 4, 2010, accepted and available on-line September 8, 2010; CCDC no. 1267/3048

Received May 4, 2010, accepted and available on-line September 8, 2010; CCDC no. 1267/3048

Abstract

C\textsubscript{11}H\textsubscript{13}ClN\textsubscript{2}O\textsubscript{2}, triclinic, \textit{P\textsubscript{T}} (no. 2), \textit{a} = 7.150(5) Å,
\textit{b} = 8.380(2) Å, \textit{c} = 10.586(2) Å, \textit{\alpha} = 71.80(2)°,
\textit{\beta} = 84.05(5)°, \textit{\gamma} = 87.47(5)°, \textit{V} = 599.3 Å3, \textit{Z} = 2,
\textit{R}\textsubscript{wp}(\textit{F}) = 0.049, \textit{wR}\textsubscript{wp}(\textit{F}^2) = 0.176, \textit{T} = 293 K.

Source of material

The title compound was obtained by dissolving 4-hydroxyantipyrine (0.408 g, 0.002 mole) in acetonitrile (10 ml) and then adding carefully of titanium tetrachloride (0.39 g, 0.002 mole) under nitrogen. A week later white crystals appear from the acetonitrile solution. TiCl\textsubscript{4} catalyzes the reaction. A suitable crystal was taken for X-ray diffraction studies.

Experimental details

The two H atoms involved in hydrogen bonding (H1 and H2) were first located from a difference Fourier map and then refined isotropically. Other H atoms were positioned geometrically and treated as riding on their parent atoms with d(C—H) = 0.96 Å (CH\textsubscript{3}) and
\textit{U} \textit{wp}(\textit{C}) = 1.5 \textit{U} \textit{wp}(\textit{C}) or d(C—H) = 0.93 Å (aromatic) and
\textit{U} \textit{wp}(\textit{H}) = 1.2 \textit{U} \textit{eq}(\textit{C}). The attempts at recrystallization of the compound did not improve crystals quality, which explains the relatively large residual values.

Discussion

4-Hydroxyantipyrine is one of the main metabolites of antipyrine in man and rat [1]. Together with 3-hydroxyantipyrine and 4,4'-dihydroxyantipyrine, they are excreted in free form or as glycoconjugates [2]. Beside our works on metal complexes based on the antipyrine skeleton [3,4], we had prepared a new derivate of 4-hydroxyantipyrine, starting from the reaction of titanium tetrachloride and an acetonitrile solution of 4-hydroxyantipyrine. The molecule consists of a Cl anion and a cation formed by a pyrazol ring P1 [C7-C9/N1-N2] and a phenyl ring P2 [C1-C6] which are planar within 0.005 and 0.008 Å, respectively, with an interplanar angle of 77.7(1)°. Bond lengths within the molecule correspond with the average C—C distance for a phenyl ring [1.371(4) Å] and the angles are normal. The comparison between this cation and the 4-hydroxyantipyrine [5] shows that the presence of a second hydroxyl group on pyrazol ring (via C7) instead of 4-hydroxyantipyrine, starting from the reaction of titanium catalyzes the reaction. As suitable crystal was taken for X-ray diffraction studies.

The two H atoms involved in hydrogen bonding (H1 and H2) were first located from a difference Fourier map and then refined isotropically. Other H atoms were positioned geometrically and treated as riding on their parent atoms with d(C—H) = 0.96 Å (CH\textsubscript{3}) and
\textit{U} \textit{wp}(\textit{C}) = 1.5 \textit{U} \textit{wp}(\textit{C}) or d(C—H) = 0.93 Å (aromatic) and
\textit{U} \textit{wp}(\textit{H}) = 1.2 \textit{U} \textit{eq}(\textit{C}). The attempts at recrystallization of the compound did not improve crystals quality, which explains the relatively large residual values.

The two H atoms involved in hydrogen bonding (H1 and H2) were first located from a difference Fourier map and then refined isotropically. Other H atoms were positioned geometrically and treated as riding on their parent atoms with d(C—H) = 0.96 Å (CH\textsubscript{3}) and
\textit{U} \textit{wp}(\textit{C}) = 1.5 \textit{U} \textit{wp}(\textit{C}) or d(C—H) = 0.93 Å (aromatic) and
\textit{U} \textit{wp}(\textit{H}) = 1.2 \textit{U} \textit{eq}(\textit{C}). The attempts at recrystallization of the compound did not improve crystals quality, which explains the relatively large residual values.

\textit{R}\textsubscript{wp}(\textit{F}) = 0.049, \textit{wR}\textsubscript{wp}(\textit{F}^2) = 0.176, \textit{T} = 293 K.

Source of material

The title compound was obtained by dissolving 4-hydroxyantipyrine (0.408 g, 0.002 mole) in acetonitrile (10 ml) and then adding carefully of titanium tetrachloride (0.39 g, 0.002 mole) under nitrogen. A week later white crystals appear from the acetonitrile solution. TiCl\textsubscript{4} catalyzes the reaction. A suitable crystal was taken for X-ray diffraction studies.

Experimental details

The two H atoms involved in hydrogen bonding (H1 and H2) were first located from a difference Fourier map and then refined isotropically. Other H atoms were positioned geometrically and treated as riding on their parent atoms with d(C—H) = 0.96 Å (CH\textsubscript{3}) and
\textit{U} \textit{wp}(\textit{C}) = 1.5 \textit{U} \textit{wp}(\textit{C}) or d(C—H) = 0.93 Å (aromatic) and
\textit{U} \textit{wp}(\textit{H}) = 1.2 \textit{U} \textit{eq}(\textit{C}). The attempts at recrystallization of the compound did not improve crystals quality, which explains the relatively large residual values.

Discussion

4-Hydroxyantipyrine is one of the main metabolites of antipyrine in man and rat [1]. Together with 3-hydroxyantipyrine and 4,4'-dihydroxyantipyrine, they are excreted in free form or as glycoconjugates [2]. Beside our works on metal complexes based on the antipyrine skeleton [3,4], we had prepared a new derivate of 4-hydroxyantipyrine, starting from the reaction of titanium tetrachloride and an acetonitrile solution of 4-hydroxyantipyrine. The molecule consists of a Cl anion and a cation formed by a pyrazol ring P1 [C7-C9/N1-N2] and a phenyl ring P2 [C1-C6] which are planar within 0.005 and 0.008 Å, respectively, with an interplanar angle of 77.7(1)°. Bond lengths within the molecule correspond with the average C—C distance for a phenyl ring [1.371(4) Å] and the angles are normal. The comparison between this cation and the 4-hydroxyantipyrine [5] shows that the presence of a second hydroxyl group on pyrazol ring (via C7) instead of a carbonyl group induces some differences within 3 e.s.d. in bond lengths and angles in P1; the most significative variations are around N2: N2—N1 [1.364(2) Å], N2—C9 [1.338(3) Å], N1—N2—C9 [108.7(2)°] compared with homologous values [1.406(2) Å, 1.387(2) Å, 105.6(1)°, respectively] observed in the 4-hydroxyantipyrine. The crystal packing is governed by two O—H···Cl hydrogen bonds [O1—H1···Cl: 2.920(2) Å, 166(3)°; O2—H2···Cl: 2.980(2) Å, 172(3)°]. Moreover, the packing is ensured by \textit{\pi}—\textit{\pi} stacking interactions which occur between P1 pyrazol rings through inversion centre at (1/2,1/2,1/2) with a centroid-to-centroid distance of 3.769(3) Å, an average spacing of 3.58 Å with an offset of 18.2°. In addition there are two C—C—O interactions [C2—H2···O2: 3.451(4) Å, 161° and C6—H6···O2: 3.450(4) Å, 153°] and one C—H···Cg (\textit{\pi}-ring) interactions [H10A···Cg: 2.94 Å; C10—H10A···Cg: 144°; i: x,y,1−z] with Cg centroid of P1 phenyl ring. The crystalline cohesion is ensured by van der Waals contacts, the shortest being 3.451(4) Å.
Table 1. Data collection and handling.

Crystal: colorless parallelepipdedic, size 0.18 x 0.20 x 0.25 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.06 cm⁻¹
Diffractometer, scan mode: Enraf-nonus CAD4, ω/2θ
2θ_max: 59.98°
N(hkl)_measured, N(hkl)_unique: 3691, 3471
Criterion for exclusion: I/σ(I) > 2 (I) 0.00, 1004
N(param/struct): 153
Programs: SIR92 [6], SHELXL-97 [7], CAMERON [8], WinGX [9], ORTEP-III [10]

Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>2e</td>
<td>0.7179(1)</td>
<td>0.3969(6)</td>
<td>0.1832(6)</td>
<td>0.1048(5)</td>
<td>0.0658(4)</td>
<td>0.0482(3)</td>
<td>−0.0057(3)</td>
<td>−0.0100(3)</td>
<td>−0.0149(2)</td>
</tr>
<tr>
<td>O(1)</td>
<td>2e</td>
<td>0.7266(3)</td>
<td>0.2350(2)</td>
<td>0.4698(2)</td>
<td>0.127(1)</td>
<td>0.0408(8)</td>
<td>0.0491(8)</td>
<td>−0.0069(8)</td>
<td>−0.0210(9)</td>
<td>−0.0105(7)</td>
</tr>
<tr>
<td>N(1)</td>
<td>2e</td>
<td>0.7612(2)</td>
<td>0.3111(2)</td>
<td>0.6559(2)</td>
<td>0.070(1)</td>
<td>0.0343(8)</td>
<td>0.0446(8)</td>
<td>−0.0007(7)</td>
<td>−0.0122(7)</td>
<td>−0.0081(6)</td>
</tr>
<tr>
<td>C(1)</td>
<td>2e</td>
<td>0.7631(3)</td>
<td>0.1448(2)</td>
<td>0.7491(2)</td>
<td>0.071(1)</td>
<td>0.0347(8)</td>
<td>0.0404(9)</td>
<td>0.0001(8)</td>
<td>−0.0077(8)</td>
<td>−0.0086(7)</td>
</tr>
<tr>
<td>O(2)</td>
<td>2e</td>
<td>0.7241(3)</td>
<td>0.6292(2)</td>
<td>0.3483(2)</td>
<td>0.103(1)</td>
<td>0.0416(8)</td>
<td>0.0486(8)</td>
<td>0.0008(8)</td>
<td>−0.0110(8)</td>
<td>−0.0086(8)</td>
</tr>
<tr>
<td>N(2)</td>
<td>2e</td>
<td>0.7741(3)</td>
<td>0.4542(2)</td>
<td>0.6896(2)</td>
<td>0.071(1)</td>
<td>0.0395(8)</td>
<td>0.0467(8)</td>
<td>0.0005(7)</td>
<td>−0.0084(7)</td>
<td>−0.0138(7)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2e</td>
<td>0.9312(4)</td>
<td>0.0741(3)</td>
<td>0.7892(3)</td>
<td>0.086(2)</td>
<td>0.057(1)</td>
<td>0.066(1)</td>
<td>0.0071(1)</td>
<td>−0.0201(1)</td>
<td>−0.0056(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2e</td>
<td>0.9296(6)</td>
<td>−0.0857(4)</td>
<td>0.8810(3)</td>
<td>0.146(3)</td>
<td>0.060(2)</td>
<td>0.068(2)</td>
<td>0.033(2)</td>
<td>−0.038(2)</td>
<td>−0.008(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2e</td>
<td>0.7767(0)</td>
<td>−0.1619(3)</td>
<td>0.9271(2)</td>
<td>0.184(4)</td>
<td>0.037(1)</td>
<td>0.048(1)</td>
<td>0.008(2)</td>
<td>−0.0145(2)</td>
<td>−0.0047(9)</td>
</tr>
<tr>
<td>C(5)</td>
<td>2e</td>
<td>0.5999(6)</td>
<td>−0.0973(4)</td>
<td>0.8837(3)</td>
<td>0.154(3)</td>
<td>0.057(2)</td>
<td>0.066(2)</td>
<td>−0.037(2)</td>
<td>0.024(2)</td>
<td>−0.016(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2e</td>
<td>0.5954(4)</td>
<td>0.0630(3)</td>
<td>0.7938(2)</td>
<td>0.084(2)</td>
<td>0.056(1)</td>
<td>0.066(1)</td>
<td>−0.013(1)</td>
<td>0.005(1)</td>
<td>−0.010(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2e</td>
<td>0.7412(3)</td>
<td>0.3547(2)</td>
<td>0.5242(2)</td>
<td>0.061(1)</td>
<td>0.0370(8)</td>
<td>0.0430(9)</td>
<td>−0.0020(8)</td>
<td>−0.0081(8)</td>
<td>−0.0086(7)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2e</td>
<td>0.7413(3)</td>
<td>0.5292(2)</td>
<td>0.4746(2)</td>
<td>0.051(1)</td>
<td>0.0372(9)</td>
<td>0.0460(9)</td>
<td>−0.0022(7)</td>
<td>−0.0052(7)</td>
<td>−0.0063(7)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2e</td>
<td>0.7603(3)</td>
<td>0.5867(2)</td>
<td>0.5804(2)</td>
<td>0.057(1)</td>
<td>0.0388(9)</td>
<td>0.052(1)</td>
<td>0.0003(8)</td>
<td>0.0001(8)</td>
<td>−0.0112(8)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2e</td>
<td>0.7658(4)</td>
<td>0.7640(3)</td>
<td>0.5811(3)</td>
<td>0.103(2)</td>
<td>0.041(1)</td>
<td>0.067(1)</td>
<td>−0.0096(1)</td>
<td>0.004(1)</td>
<td>−0.018(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>2e</td>
<td>0.7788(4)</td>
<td>0.4506(3)</td>
<td>0.8284(2)</td>
<td>0.090(2)</td>
<td>0.054(1)</td>
<td>0.052(1)</td>
<td>0.001(1)</td>
<td>−0.015(1)</td>
<td>−0.020(1)</td>
</tr>
</tbody>
</table>

References

3. Bekaert, A.; Lemoine, P.; Brion, J. D.; Viossat, B.: Crystal structure of bis[acetoxy-κ¹O₂O₂][bis(acetoxy-κ¹O₂O₂)-κN phenazone] dioxoaruran, [U₃O₅(CH₃COO)₃(C₂H₅N₂C₂(CH₃)₂O)]₂. Z. Kristallogr. NCS 221 (2006) 45-46.