Crystal structure of bis(2-(3-(carboxylatomethyl-kO,O')-4-(phenylthio)-phenyl)propanoate-κO,O')bis(2,2'-dipyridyl-κN,N')dizinc(II), C_{54}H_{44}N_{4}O_{8}S_{2}Zn_{2}

Zhan-Wang Shi*, Peng Liang, Cui-Ling Cen, Rong-Ping Zhao, Xi Wei and Nian Guan
Department of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, Guangxi Province, P. R. China
Received November 02, 2012, accepted January 24, 2013, available online May 17, 2013, CCDC no. 1267/3962

Abstract
C_{54}H_{44}N_{4}O_{8}S_{2}Zn_{2}, monoclinic, P2_{1}/c (no. 14), a = 13.299(4) Å, b = 12.019(3) Å, c = 15.320(4) Å, \(\beta = 93.256(4)\degree \), \(V = 2444.8 \) Å\(^3\), \(Z = 2 \), \(R_{gt}(F) = 0.0502 \), \(wR_{ref}(F^2) = 0.1430 \), \(T = 296 \) K.

Source of material
A mixture of 2-(3-(carboxymethyl)-4-(phenylthio)phenyl)propanoic acid (0.3158 g, 1 mmol), 2,2'-bipyridine (0.1584 g, 1 mmol), ZnCl\(_2\) (0.1372 g, 1 mmol), water (10 ml), ethanol (5 ml) and DMF (5 ml) was placed in a Parr Teflon-lined stainless steel vessel (25 ml). Then an aqueous solution of sodium hydroxide was added dropwise until the pH value reached 6.0. The sealed reactor was kept under autogenous pressure at 403K for 72 h and then slowly cooled to room temperature at a rate of 10K per hour. Colourless needles of the title complex were obtained. Elemental analysis cald (%): C, 60.46; H, 4.11; N, 5.23; O, 11.94; S, 5.97; Zn, 12.20. found (%): C, 60.12; H, 4.34; N, 5.57; O, 11.41; S, 6.08; Zn, 12.35.

Experimental details
The positions of all H atoms were fixed geometrically using a riding model, in the later stages the \(U_{iso} \) value was fixed. The bond lengths for C–H are about 0.93 Å in benzene ring and pyridine ring.

Discussion
Zaltoprofen aroused considerable interest in biology and medicine due to its antiproliferative activities. It is an antimicrobial drug belonging to the carboxylic acid derivatives, and has exhibited wide applications in human and veterinary medicine. The ligand used in this investigation shows some similarities to zaltoprofen. Metal complexes containing carboxylato ligands are of general interest [e.g. 1-4]. In the title compound the Zn metal atom resides in an slightly distorted cis-octahedral geometry. The Zn(II) atom is coordinated by two N atoms from a 2,2'-bipyridine ligand and four carboxylate O atoms (O1, O2, O3a, O4a) from two dicarboxylate ligands. The lengths of the Zn–O bonds range from 2.022(4) to 2.372(4) Å. The Zn–N1 and Zn–N2 bond legnths are 2.067(4) and 2.091(4) Å, respectively. Two Zn metal centres are centrosymmetrically bridged by two dicarboxylic ligands giving a cyclic dimer. The phenylsulfide bases are located outside of the dimeric unit (Fig.).

Table 1. Crystal data and handling.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>(U_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>4e</td>
<td>0.9250</td>
<td>0.7582</td>
<td>0.2062</td>
<td>0.079</td>
</tr>
<tr>
<td>H(2)</td>
<td>4e</td>
<td>0.8576</td>
<td>0.8741</td>
<td>0.0995</td>
<td>0.100</td>
</tr>
<tr>
<td>H(3)</td>
<td>4e</td>
<td>0.9104</td>
<td>0.8579</td>
<td>0.1912</td>
<td>0.111</td>
</tr>
<tr>
<td>H(4)</td>
<td>4e</td>
<td>1.0298</td>
<td>0.7244</td>
<td>0.0919</td>
<td>0.099</td>
</tr>
<tr>
<td>H(5)</td>
<td>4e</td>
<td>1.1324</td>
<td>0.5863</td>
<td>0.0913</td>
<td>0.099</td>
</tr>
<tr>
<td>H(6)</td>
<td>4e</td>
<td>1.2464</td>
<td>0.4436</td>
<td>0.1006</td>
<td>0.115</td>
</tr>
<tr>
<td>H(7)</td>
<td>4e</td>
<td>1.2927</td>
<td>0.3418</td>
<td>0.0220</td>
<td>0.116</td>
</tr>
<tr>
<td>H(8)</td>
<td>4e</td>
<td>1.2288</td>
<td>0.3898</td>
<td>0.1536</td>
<td>0.097</td>
</tr>
<tr>
<td>H(9)</td>
<td>4e</td>
<td>0.8489</td>
<td>0.3465</td>
<td>0.3224</td>
<td>0.086</td>
</tr>
<tr>
<td>H(10)</td>
<td>4e</td>
<td>0.7833</td>
<td>0.4131</td>
<td>0.2529</td>
<td>0.086</td>
</tr>
<tr>
<td>H(11)</td>
<td>4e</td>
<td>0.6964</td>
<td>0.6646</td>
<td>0.4201</td>
<td>0.078</td>
</tr>
<tr>
<td>H(12)</td>
<td>4e</td>
<td>0.5942</td>
<td>0.5654</td>
<td>0.5443</td>
<td>0.087</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₂</th>
<th>U₂₃</th>
<th>U₂₄</th>
<th>U₃₃</th>
<th>U₄₄</th>
<th>U₅₅</th>
<th>U₆₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(18)</td>
<td>4e</td>
<td>0.7922</td>
<td>0.3477</td>
<td>0.4672</td>
<td>0.079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(19)</td>
<td>4e</td>
<td>0.3982</td>
<td>0.5165</td>
<td>0.1703</td>
<td>0.147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(20)</td>
<td>4e</td>
<td>0.5592</td>
<td>0.4986</td>
<td>0.2356</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(21)</td>
<td>4e</td>
<td>0.6040</td>
<td>0.8231</td>
<td>0.1991</td>
<td>0.102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(22)</td>
<td>4e</td>
<td>0.4454</td>
<td>0.8357</td>
<td>0.1310</td>
<td>0.139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>4e</td>
<td>0.4454</td>
<td>0.8357</td>
<td>0.1310</td>
<td>0.139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)</td>
<td>4e</td>
<td>0.6280</td>
<td>0.4206</td>
<td>0.6303</td>
<td>0.135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)</td>
<td>4e</td>
<td>0.4406</td>
<td>0.6432</td>
<td>0.4454</td>
<td>0.5720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)</td>
<td>4e</td>
<td>0.1616</td>
<td>0.3266</td>
<td>0.5462</td>
<td>0.6098</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)</td>
<td>4e</td>
<td>0.2852</td>
<td>0.4248</td>
<td>0.5892</td>
<td>0.6352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)</td>
<td>4e</td>
<td>0.3944</td>
<td>0.5240</td>
<td>0.5962</td>
<td>0.6512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)</td>
<td>4e</td>
<td>0.1230</td>
<td>0.4360</td>
<td>0.3730</td>
<td>0.3830</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)</td>
<td>4e</td>
<td>0.1894</td>
<td>0.5936</td>
<td>0.3786</td>
<td>0.3920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)</td>
<td>4e</td>
<td>0.1640</td>
<td>0.5480</td>
<td>0.3256</td>
<td>0.3280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)</td>
<td>4e</td>
<td>0.2132</td>
<td>0.6386</td>
<td>0.3826</td>
<td>0.4120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)</td>
<td>4e</td>
<td>0.3404</td>
<td>0.7540</td>
<td>0.4836</td>
<td>0.8840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgments. This work is supported by the Innovation University for Nationalities (guxn-chx20110952).

References

1. Dong, X. Y.; Xu, X. J.; Yang, L.: Bis(µ-biphenyl-2,2'-dicarboxylato) bis[aqua(4,4'-dimethyl-1,2,2'-bipyridine-5,5'-dicopper(I)]. Acta Crystallogr. E65 (2009) m1360.