Crystal structure of a new alkaline-cadmium carbonate Li$_2$RbCd(CO$_3$)$_2$F, C$_2$CdFLi$_2$O$_6$Rb

Jie Chen1, Min Luo*, II and Ning YeII

1 College of Civil Engineering, Fujian University of Technology, Fuzhou 350108, Fujian Province, P. R. China
2 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 W. Yangqiao Rd., Fuzhou 350002, Fujian Province, P. R. China

Received September 17, 2014, accepted December 18, 2014, available online January 05, 2015, CSD no. 710094

Abstract

C$_2$CdFLi$_2$O$_6$Rb, hexagonal, $P6_3/m$ (no. 176), $a = 4.915(4)$ Å, $c = 15.45(1)$ Å, $V = 323.3$ Å3, $Z = 2$, $R_{gt}(F) = 0.0242$, $wR_{ref}(F^2) = 0.0571$, $T = 293$ K.

Source of material

Single crystal of Li$_2$RbCd(CO$_3$)$_2$F was synthesized under a subcritical hydrothermal condition. A mixture of Rb$_2$CO$_3$ (4.6 g, 0.02 mol), CdCl$_2$·5H$_2$O (0.912 g, 0.004 mol), and H$_2$O (5.0 mL) was sealed in an autoclave equipped with a Teflon liner (23 mL) and heated at 493 K for 5 days, followed by slow cooling to room temperature at a rate of 3 K/h. The reaction product was washed with deionized water and then dried in air. A few colourless prism-shaped crystals of the title compound were obtained.

Experimental details

The structure of Li$_2$RbCd(CO$_3$)$_2$F was solved by the direct methods. Then it was refined by full-matrix least-squares fitting on F^2 by SHELX-97 [7]. All nonhydrogen atoms were refined with anisotropic thermal parameters. The structure was verified using the ADDSYM algorithm from the program PLATON [8], and no higher symmetries were found.

Discussion

Owing to carbonates have potential application to optoelectronic and nonlinear optical devices [1, 2], they have attracted great attention of material scientists in recent years. As a result of intensive studies, many excellent carbonate crystals have been reported, including ABCO$_3$F (A = K, Rb, Cs; B = Ca, Sr, Ba) [3], CsNa$_5$Ca$_5$(CO$_3$)$_8$, Na$_4$La$_2$(CO$_3$)$_5$ [4], Na$_3$RE(CO$_3$)$_3$(RE = Y, Gd) [5], Na$_8$Lu$_2$(CO$_3$)$_6$F$_2$ and Na$_3$Lu(CO$_3$)$_2$F$_2$ [6]. It is worth noting that previous researches mainly focus on the alkaline-alkaline earth and alkaline-rare earth carbonate system. However, carbonates possessing a d^{10} cation like Cd$^{2+}$ have rarely been studied. In the present work, the alkaline-cadmium systems were studied by hydrothermal method. As a result, we have obtained a new carbonate, Li$_2$RbCd(CO$_3$)$_2$F. The title structure is made up of alternately stacked layers of [Li(CO$_3$)$_2$] and [RbF] and all the adjacent [Li(CO$_3$)$_2$] are connected by [CdO$_6$] polyhedra, forming a complicated three-dimensional network. In the structure, all the atoms occupy one crystallographic position, respectively. The lithium atom is surrounded by the one F atom and three O atoms to form [LiO$_3$F] polyhedra. The cadmium atom is surrounded by six O atoms to form [CdO$_6$] polyhedra. In addition, the rubidium is connected by three F atoms and six O atoms to form [RbO$_6$F$_2$] polyhedra.
Table 2. Atomic coordinates and displacement parameters (in Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(1)</td>
<td>2b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0083(2)</td>
<td>0.0083(2)</td>
<td>0.0096(4)</td>
<td>0.0041(1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O(1)</td>
<td>12i</td>
<td>0.0727(7)</td>
<td>0.4033(6)</td>
<td>0.0900(2)</td>
<td>0.011(1)</td>
<td>0.010(1)</td>
<td>0.018(2)</td>
<td>0.004(1)</td>
<td>0.002(1)</td>
<td>-0.003(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4f</td>
<td>½</td>
<td>½</td>
<td>½</td>
<td>0.0895(4)</td>
<td>0.012(2)</td>
<td>0.012(2)</td>
<td>0.001(3)</td>
<td>0.0057(9)</td>
<td>0</td>
</tr>
<tr>
<td>F(1)</td>
<td>2d</td>
<td>½</td>
<td>½</td>
<td>½</td>
<td>0.019(2)</td>
<td>0.019(2)</td>
<td>0.011(3)</td>
<td>0.0092(9)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rb(1)</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>½</td>
<td>0.0157(3)</td>
<td>0.0157(3)</td>
<td>0.0128(5)</td>
<td>0.0079(2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Li(1)</td>
<td>4f</td>
<td>½</td>
<td>½</td>
<td>0.1306(8)</td>
<td>0.006(3)</td>
<td>0.006(3)</td>
<td>0.018(6)</td>
<td>0.003(2)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

References