Mohammed Abdelaziz Elmakki*, Renier Koen, Johan Andries Venter and Ruben Drost

Crystal structure of dicarbonyl(pyridin-2-olate-1-oxido-κ²O,O')rhodium(I), C₇H₄NO₄Rh

DOI 10.1515/ncrs-2015-0240
Received October 14, 2015; accepted February 16, 2016; available online March 17, 2016

Abstract

C₇H₄NO₄Rh, monoclinic, P2₁/c (no. 14), a = 3.5780(12) Å, b = 10.932(4) Å, c = 20.866(7) Å, β = 94.792(11)°, V = 813.3(12) Å³, Z = 4, R_{w}(F) = 0.0345, wR_{ref}(F²) = 0.0712, T = 100 K.

CCDC no.: 1453966

The crystal structure is shown in the figure. Tables 1–3 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

RhCl₃·H₂O (0.1 g, 0.48 mmol) was dissolved in 6 cm³ of DMF and refluxed for 30 min. The solution was cooled to room temperature. [Rh(hpno)(CO)₂] was synthesized by addition of 1-hydroxypyridine N-oxide (0.053 g, 0.48 mmol) in 3 cm³ of DMF. A yellow precipitate was formed after the addition of ice water. The precipitate was filtered off and dried. Yellow needle-shaped crystals formed in acetone and addition of 1-hydroxypyridine 4·methanol. IR: ν(Rh(CO) 2067, 2005 cm⁻¹, 1H-NMR (300 MHz, Acetone-d₆) δ = 8.18 (d, J = 6.6 Hz, 1H), 7.62 (t, J = 7.1 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.87 (t, J = 6.1 Hz, 1H), 13C-NMR (151 MHz, Acetone-d₆) δ = 185.42 (d, JRh = 70.1 Hz), 184.81 (d, JRh = 71.6 Hz), 161.92 (s), 135.78 (s), 135.24 (s), 115.73 (s), 112.25 (s).

Experimental details

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with U_{iso}(H) = 1.2U_{eq}(C) and 1.5U_{eq}(C), respectively. The highest peak is located 1.75 Å from C5 and the deepest hole is situated 1.72 Å from H3.

The displacement parameters of C1 and N1 indicate that these positions may suffer an N/C disorder, which doesn’t affect the coordination of the Rh(I).

Discussion

2-hydroxypyridine N-oxide (hpno) is a heterocyclic, hard bidentate ligand with a hydroxyl and ketone group which can coordinate with hard metal ions by the two oxygen atoms to form a five-membered ring chelate [1, 2]. This study forms part of research in our group on the relationships of structure and...
reactivity of metal complexes having different O,O'-, O,N', O,S- and P,P'-bidentate ligands [3–5]. Metal complexes with hpon have been less studied hpon is a versatile ligand and the complexes formed by this ligand with different metals have various uses in chemical, biological and pharmaceutical fields [6–11]. Crystal structures of dicarbonyl rhodium(I) complexes with different bidentate ligands have been less studied [12–15]. A precursor $[\text{Rh(BID)}(\text{CO})_3]$ where (BID) represents different monocharged bidentate ligands have been studied as a catalyst [16]. In the title structure, a slightly distorted square planar geometry is observed. The small $\text{O}^\text{-Rh}^\text{-O}$ angle of 80.75(11)$^\circ$ confirms the distortion, while the $\text{C}^\text{-Rh}^\text{-C}$ angle is 89.70(18)$^\circ$. When this structure is compared with rhodium cupferrate complexes (cupferrate also coordinates as a five-membered ring) which was synthesized in our laboratory, the coordination with regard to O,O' single charge, five membered ring is the same, with a slightly smaller bite angle of 78$^\circ$ [17, 18].

Acknowledgements: The authors would like to thank the South African NRF, Prof. Andreas Roodt (the head of inorganic chemistry group) and the University of the Free State for financial support, while Dr. Linette Twigg is also thanked for NMR data discussion. Financial assistance from the faculty of Natural and Agricultural science, Department of Chemistry, University of the Free State is gratefully acknowledged.

References

