Crystal structure of 3,4-dinitropyrazole, C₃H₂N₄O₄

Chen Lizhen, Song Liang, Cao Duanlin and Wang Jianlong*

Crystal structure of 3,4-dinitropyrazole, C₃H₂N₄O₄

Abstract

C₃H₂N₄O₄, monoclinic, P2₁/c (No. 14), a = 9.7013(13) Å, b = 12.0797(10) Å, c = 9.7587(7) Å, \(\beta = 93.962(11)^\circ \), \(V = 1140.88(19) \, \text{Å}^3 \), \(Z = 8 \), \(R_{wp}(F) = 0.0408 \), \(wR_{wp}(F^2) = 0.1001 \), \(T = 105.3 \, \text{K} \).

CCDC no.: 1486980

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

The title compound was prepared by nitrifying pyrazole. It was recrystallized from an ether solution at room temperature to give colorless crystals suitable for single-crystal X-ray diffraction.

Experimental details

All H atoms were positioned geometrically and treated as riding, with C–H bond lengths constrained to 0.95 Å and \(U_{iso}(H) = 1.2U_{eq}(C) \), and N–H bond 0.88 Å and \(U_{iso}(H) = 1.2U_{eq}(N) \).

*Corresponding author: Wang Jianlong, School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, Shanxi Province, P. R. China, e-mail: 619379961@qq.com
Chen Lizhen, Song Liang and Cao Duanlin: School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, Shanxi Province, P. R. China

© 2016 Chen Lizhen et al., published by De Gruyter.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Discussion

Polynitropyrazole systems have been investigated extensively because of their biological activity. [1–3]. Recently, these so called "high energy density materials" have attracted renewed attention in conjunction with their favorable detonation performance [4, 5]. As a promising candidate, 3,4-dinitropyrazole was synthesized by the nitration of pyrazole [6]. We here report the crystal structure of the title compound (Fig. 1).

As shown in the figure, 3,4-dinitropyrazole crystallizes with two crystallographic independent molecules in the asymmetric unit. The two pyrazole rings are approximately parallel. Owing to space steric effect, the dihedral angle of the two adjacent nitro groups are 76.5 and 69.4° in the two pyrazole rings, respectively.

All geometric parameters are in the expected ranges.

Acknowledgements: We thank the Center of Testing and Analysis, Beijing University of Chemical Technoly, for support.

References