Crystal structure of bis(dicyanamido-κ²N)-tetrakis[1-benzyl-1H-1,2,4-triazole-κ²N]cobalt(II), CoC₄₀H₃₆N₁₈

Xia Zhu* and Yong-feng Wang

Abstract
CoC₄₀H₃₆N₁₈, monoclinic, P2₁/c (no. 14), a = 9.7410(15) Å, b = 15.511(2) Å, c = 14.162(2) Å, β = 110.00(3)°, V = 2010.7(5) Å³, Z = 2, R(F) = 0.0395, wR(F²) = 0.0869, T = 223(2) K.

CCDC no.: 1497343

The crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of

Table 1: Data collection and handling.

Crystal:	Light-orange block
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	4.8 cm⁻¹
Diffractometer, scan mode:	Rigaku Mercury, ω
2θmax, completeness:	50.6°, >99%
N(hkl)measured, N(hkl)unique:	18996, 3661, 0.029
Criterion for	Iobs > 2σ(Iobs), 3344
N(param)refined:	268
Programs:	SHELX [9], CrystalClear [10]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso* / Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co1</td>
<td>-0.17559(18)</td>
<td>-0.2424(1)</td>
<td>-0.1152(1)</td>
<td>0.02606(12)</td>
</tr>
<tr>
<td>N1</td>
<td>-0.30626(18)</td>
<td>0.2042(1)</td>
<td>-0.1283(1)</td>
<td>0.0314(2)</td>
</tr>
<tr>
<td>N2</td>
<td>-0.12432(17)</td>
<td>0.1069(1)</td>
<td>-0.0819(1)</td>
<td>0.0314(2)</td>
</tr>
<tr>
<td>N3</td>
<td>-0.21121(18)</td>
<td>0.1679(1)</td>
<td>-0.2478(11)</td>
<td>0.0327(4)</td>
</tr>
<tr>
<td>N4</td>
<td>-0.07281(19)</td>
<td>0.1820(11)</td>
<td>-0.2468(13)</td>
<td>0.0413(5)</td>
</tr>
<tr>
<td>N5</td>
<td>-0.07404(17)</td>
<td>0.0867(11)</td>
<td>-0.1271(11)</td>
<td>0.0306(4)</td>
</tr>
<tr>
<td>N7</td>
<td>0.3732(2)</td>
<td>-0.0485(1)</td>
<td>-0.1146(18)</td>
<td>0.0587(6)</td>
</tr>
<tr>
<td>N8</td>
<td>0.18400(18)</td>
<td>-0.0349(11)</td>
<td>-0.0385(13)</td>
<td>0.0345(4)</td>
</tr>
<tr>
<td>N9</td>
<td>0.4539(2)</td>
<td>0.0618(14)</td>
<td>-0.2071(16)</td>
<td>0.0504(5)</td>
</tr>
<tr>
<td>C1</td>
<td>-0.1157(2)</td>
<td>-0.3677(12)</td>
<td>-0.0051(15)</td>
<td>0.0315(4)</td>
</tr>
<tr>
<td>C2</td>
<td>-0.2117(2)</td>
<td>-0.3663(15)</td>
<td>0.0474(17)</td>
<td>0.0419(5)</td>
</tr>
<tr>
<td>H2A</td>
<td>-0.3085</td>
<td>-0.3483</td>
<td>0.0155</td>
<td>0.050*</td>
</tr>
<tr>
<td>C3</td>
<td>-0.1664(3)</td>
<td>-0.3923(16)</td>
<td>0.1466(18)</td>
<td>0.0489(6)</td>
</tr>
<tr>
<td>H3A</td>
<td>-0.2323</td>
<td>-0.3910</td>
<td>0.1820</td>
<td>0.059*</td>
</tr>
<tr>
<td>C4</td>
<td>-0.0259(3)</td>
<td>-0.4197(16)</td>
<td>0.1938(17)</td>
<td>0.0498(6)</td>
</tr>
<tr>
<td>H4A</td>
<td>0.0044</td>
<td>-0.4377</td>
<td>0.2613</td>
<td>0.060*</td>
</tr>
<tr>
<td>C5</td>
<td>0.0701(3)</td>
<td>-0.4208(2)</td>
<td>0.1426(2)</td>
<td>0.0637(8)</td>
</tr>
<tr>
<td>H5A</td>
<td>0.1669</td>
<td>-0.4390</td>
<td>0.1750</td>
<td>0.076*</td>
</tr>
<tr>
<td>C6</td>
<td>0.0250(3)</td>
<td>-0.3950(4)</td>
<td>0.04308(9)</td>
<td>0.0544(7)</td>
</tr>
<tr>
<td>H6A</td>
<td>0.0915</td>
<td>-0.3963</td>
<td>0.0081</td>
<td>0.065*</td>
</tr>
<tr>
<td>C7</td>
<td>-0.1611(2)</td>
<td>-0.3367(9)</td>
<td>-0.11227(15)</td>
<td>0.0371(5)</td>
</tr>
<tr>
<td>H7A</td>
<td>-0.0880</td>
<td>-0.3541</td>
<td>-0.1419</td>
<td>0.045*</td>
</tr>
<tr>
<td>H7B</td>
<td>-0.2547</td>
<td>-0.3631</td>
<td>-0.1517</td>
<td>0.045*</td>
</tr>
<tr>
<td>C8</td>
<td>-0.2693(2)</td>
<td>-0.1234(14)</td>
<td>-0.1078(16)</td>
<td>0.0393(5)</td>
</tr>
<tr>
<td>H8A</td>
<td>-0.3381</td>
<td>-0.0800</td>
<td>-0.1110</td>
<td>0.047*</td>
</tr>
<tr>
<td>C9</td>
<td>-0.0700(2)</td>
<td>-0.1844(13)</td>
<td>-0.08797(15)</td>
<td>0.0335(5)</td>
</tr>
</tbody>
</table>
Table 2 (continued)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>(U_{\text{eq}}/U_{\text{eq}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>H9A</td>
<td>0.0295</td>
<td>−0.1963</td>
<td>−0.0747</td>
<td>0.040*</td>
</tr>
<tr>
<td>C10</td>
<td>−0.3679(2)</td>
<td>0.18563(13)</td>
<td>−0.42672(15)</td>
<td>0.0314(4)</td>
</tr>
<tr>
<td>C11</td>
<td>−0.4196(2)</td>
<td>0.24668(14)</td>
<td>−0.50231(15)</td>
<td>0.0387(5)</td>
</tr>
<tr>
<td>H11A</td>
<td>−0.4284</td>
<td>0.3044</td>
<td>−0.4857</td>
<td>0.046*</td>
</tr>
<tr>
<td>C12</td>
<td>−0.4584(3)</td>
<td>0.22231(16)</td>
<td>−0.62014(16)</td>
<td>0.0458(6)</td>
</tr>
<tr>
<td>H12A</td>
<td>−0.4946</td>
<td>0.2637</td>
<td>−0.6530</td>
<td>0.055*</td>
</tr>
<tr>
<td>C13</td>
<td>−0.4441(2)</td>
<td>0.13782(17)</td>
<td>−0.62700(17)</td>
<td>0.0463(6)</td>
</tr>
<tr>
<td>H13A</td>
<td>−0.4692</td>
<td>0.1217</td>
<td>−0.6948</td>
<td>0.056*</td>
</tr>
<tr>
<td>C14</td>
<td>−0.3931(2)</td>
<td>0.07730(16)</td>
<td>−0.55242(17)</td>
<td>0.0447(5)</td>
</tr>
<tr>
<td>H14A</td>
<td>−0.3839</td>
<td>0.0195</td>
<td>−0.5694</td>
<td>0.054*</td>
</tr>
<tr>
<td>C15</td>
<td>−0.3551(2)</td>
<td>0.10083(14)</td>
<td>−0.45237(16)</td>
<td>0.0409(5)</td>
</tr>
<tr>
<td>H15A</td>
<td>−0.3206</td>
<td>0.0590</td>
<td>−0.4018</td>
<td>0.049*</td>
</tr>
<tr>
<td>C16</td>
<td>−0.3582(2)</td>
<td>0.21305(15)</td>
<td>−0.31880(15)</td>
<td>0.0411(5)</td>
</tr>
<tr>
<td>H16A</td>
<td>−0.3164</td>
<td>0.2752</td>
<td>−0.3133</td>
<td>0.049*</td>
</tr>
<tr>
<td>H16B</td>
<td>−0.4224</td>
<td>0.2024</td>
<td>−0.3002</td>
<td>0.049*</td>
</tr>
<tr>
<td>C17</td>
<td>0.0044(2)</td>
<td>0.13195(14)</td>
<td>−0.17307(15)</td>
<td>0.0375(5)</td>
</tr>
<tr>
<td>H17A</td>
<td>0.1066</td>
<td>0.1277</td>
<td>−0.1535</td>
<td>0.045*</td>
</tr>
<tr>
<td>C18</td>
<td>−0.2093(2)</td>
<td>0.11214(13)</td>
<td>−0.17685(14)</td>
<td>0.0328(5)</td>
</tr>
<tr>
<td>H18A</td>
<td>−0.2925</td>
<td>0.0931</td>
<td>−0.1635</td>
<td>0.039*</td>
</tr>
<tr>
<td>C19</td>
<td>0.2727(2)</td>
<td>−0.03709(13)</td>
<td>−0.07476(15)</td>
<td>0.0319(4)</td>
</tr>
<tr>
<td>C20</td>
<td>0.4116(2)</td>
<td>0.01356(14)</td>
<td>−0.16206(16)</td>
<td>0.0363(5)</td>
</tr>
</tbody>
</table>

the atoms including atomic coordinates and displacement parameters.

Source of material

A methanolic solution (10 mL) of 1-benzyl-1H-1,2,4-triazole (1.0 mmol) was added slowly to an aqueous solution (10 mL) of Co(NO\(_3\))\(_2\)-6H\(_2\)O (0.5 mmol) and Na[N(CN)\(_2\)] (1.0 mmol) with stirring. The mixture was stirred at room temperature and the resultant solution was filtered. The filtrate was allowed to stand for several days, yielding colorless crystals of the title compound.

Experimental details

All hydrogen atoms were placed in idealized positions and refined using a riding model.

Discussion

Design, synthesis and characterization of coordination polymers have drawn great interest not only because of their versatile structural motifs and intriguing structures, but also mainly due to their various applications in the areas of optics, magnetism, electronics, catalysis, molecular recognition and adsorption and biological activity [1–4]. The ligands and metal centers both are the key to the design and construction of metal-organic frameworks. A large number of mononuclear, oligonuclear, and polynuclear transition metal complexes of 1- and 4-substituted 1,2,4-triazole derivatives have been synthesized and characterized due to their interesting properties and novel topologies [5–8]. In this paper, we select 1-benzyl-1H-1,2,4-triazole to react with Co(II) ions to obtain a new MOFs.

The asymmetric unit of the title structure consists of one half of a Co\(^{2+}\) ion, two 1-benzyl-1H-1,2,4-triazole and one [N(CN)\(_2\)]\(^{−}\). Each Co(II) atom is coordinated by four nitrogen atoms from four 1-benzyl-1H-1,2,4-triazole ligands and two nitrogen atoms from two [N(CN)\(_2\)]\(^{−}\) anionic ligands in octahedral geometry. The bond lengths and angles around the Co(II) are in the ranges of 2.1152(17)–2.1646(15) Å and 86.26(6)–180.00(12)°, respectively. These findings are all in the normal range for a distorted octahedral Co complex.

Acknowledgements: I acknowledge support for the publication fee by Chinese Universities Scientific Fund (grant No. 3122016L015).

References

6. Qian, X.; Sun, P. P.; Ding, J. G.; Li, B. L.; Li, H. Y.: Syntheses, structures and properties of Mn(II), Zn(II) and Ag(II) coordination polymers with 2-(1,2,4-triazol-1-yl)acetate. J. Mol. Struct. 1031 (2013) 175–179.