Yong Hong*, Gaozhang Gou, Wei Liu* and Heping Yan

Crystal structure of (E)-2,4-dibromo-6-(((4-methyl-2-nitrophenyl)imino)methyl)phenol, C_{10}H_{14}Br_{2}N_{2}O_{3}

DOI 10.1515/ncrs-2016-0269
Received October 25, 2016; accepted March 10, 2017; available online March 23, 2017

Abstract

C_{14}H_{10}Br_{2}N_{2}O_{3}, monoclinic, P2_{1}/c (no. 14), a = 10.4183(3) Å, b = 11.5741(3) Å, c = 14.0587(4) Å, β = 89.011(3)°, V = 1455.0(5) Å^3, Z = 4, R_{gt}(F) = 0.0474, wR_{ref}(F^2) = 0.1314, T = 293 K.

CCDC no.: 1465500

The asymmetric unit of the title crystal structure is shown in the figure. Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Source of material

4-Methyl-2-nitroaniline (1 mmol, 0.152 g) and 3,5-dibromosalicylaldehyde (1 mmol, 0.180 g) were added to ethanol (10 mL). The mixture was refluxed for 4 h. The solution was evaporated slowly at room temperature to obtain colorless prismatic crystals of the title compound.

*Corresponding authors: Yong Hong and Wei Liu, College of Science, Honghe University, Mengzi 661199, Yunnan Province, P. R. China, e-mail: hongyong1018@163.com (Y. Hong); liuwei4728@163.com (W. Liu)
Gaozhang Gou and Heping Yan: Key Laboratory of Natural Pharmaceutical & Chemical Biology of Yunnan Province, Mengzi 661199, Yunnan, P. R. China

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	0.28 × 0.24 × 0.21 mm
Wavelength:	Cu Kα radiation (1.54178 Å)
μ:	71.8 cm^{-1}
Diffractometer, scan mode:	Bruker APEX-II, ω-scans
2θ_{max}, completeness:	136.4°, >97%
N(hkl)_{measured}, N(hkl)_{unique}, R_{int}:	8305, 2601, 0.078
Criterion for I_{obs}, N(hkl)_{gt}:	I_{obs} > 2σ(I_{obs}), 2188
N(param)_{refined}:	192
Programs:	Bruker programs [1], SHELX [2], OLEX2 [3]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2).

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{iso}/U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br1</td>
<td>0.42470(3)</td>
<td>−0.08083(7)</td>
<td>0.22617(3)</td>
<td>0.0662(2)</td>
</tr>
<tr>
<td>Br2</td>
<td>0.33951(4)</td>
<td>0.12776(8)</td>
<td>0.57074(3)</td>
<td>0.0762(2)</td>
</tr>
<tr>
<td>C1</td>
<td>0.3315(2)</td>
<td>−0.0009(5)</td>
<td>0.3031(2)</td>
<td>0.0437(7)</td>
</tr>
<tr>
<td>C2</td>
<td>0.3642(2)</td>
<td>0.0345(5)</td>
<td>0.3912(2)</td>
<td>0.0482(8)</td>
</tr>
<tr>
<td>H2</td>
<td>0.4317</td>
<td>0.0244</td>
<td>0.4127</td>
<td>0.058*</td>
</tr>
<tr>
<td>C3</td>
<td>0.2948(3)</td>
<td>0.0856(5)</td>
<td>0.4480(2)</td>
<td>0.0462(8)</td>
</tr>
<tr>
<td>C4</td>
<td>0.2312(2)</td>
<td>0.0149(5)</td>
<td>0.2679(2)</td>
<td>0.0401(7)</td>
</tr>
<tr>
<td>C5</td>
<td>0.1950(3)</td>
<td>0.1060(4)</td>
<td>0.4165(2)</td>
<td>0.0435(7)</td>
</tr>
<tr>
<td>H5</td>
<td>0.1496</td>
<td>0.1431</td>
<td>0.4551</td>
<td>0.052*</td>
</tr>
<tr>
<td>C6</td>
<td>0.1624(2)</td>
<td>0.0706(4)</td>
<td>0.3265(2)</td>
<td>0.0378(7)</td>
</tr>
<tr>
<td>C7</td>
<td>0.0566(2)</td>
<td>0.0962(4)</td>
<td>0.2943(2)</td>
<td>0.0387(7)</td>
</tr>
<tr>
<td>H7</td>
<td>0.0129</td>
<td>0.1364</td>
<td>0.3337</td>
<td>0.046*</td>
</tr>
<tr>
<td>C8</td>
<td>−0.0794(2)</td>
<td>0.0806(4)</td>
<td>0.1820(2)</td>
<td>0.0372(6)</td>
</tr>
<tr>
<td>C9</td>
<td>−0.1097(2)</td>
<td>0.1342(4)</td>
<td>0.0934(2)</td>
<td>0.0355(7)</td>
</tr>
<tr>
<td>C10</td>
<td>−0.2087(2)</td>
<td>0.1283(4)</td>
<td>0.0550(2)</td>
<td>0.0420(7)</td>
</tr>
<tr>
<td>H10</td>
<td>−0.2256</td>
<td>0.1612</td>
<td>−0.0047</td>
<td>0.050*</td>
</tr>
<tr>
<td>C11</td>
<td>−0.2819(2)</td>
<td>0.0731(5)</td>
<td>0.1063(2)</td>
<td>0.0437(7)</td>
</tr>
<tr>
<td>C12</td>
<td>−0.2538(2)</td>
<td>0.0242(5)</td>
<td>0.1948(2)</td>
<td>0.0469(8)</td>
</tr>
<tr>
<td>H12</td>
<td>−0.3029</td>
<td>−0.0099</td>
<td>0.2302</td>
<td>0.056*</td>
</tr>
<tr>
<td>C13</td>
<td>−0.1542(2)</td>
<td>0.0247(5)</td>
<td>0.2324(2)</td>
<td>0.0420(7)</td>
</tr>
<tr>
<td>H13</td>
<td>−0.1375</td>
<td>0.0126</td>
<td>0.2915</td>
<td>0.050*</td>
</tr>
<tr>
<td>C14</td>
<td>−0.3897(3)</td>
<td>0.0651(6)</td>
<td>0.0655(3)</td>
<td>0.0591(10)</td>
</tr>
<tr>
<td>H14A</td>
<td>−0.4132</td>
<td>−0.0599</td>
<td>0.0665</td>
<td>0.089*</td>
</tr>
<tr>
<td>H14B</td>
<td>−0.3950</td>
<td>0.1082</td>
<td>0.0048</td>
<td>0.089*</td>
</tr>
<tr>
<td>H14C</td>
<td>−0.4296</td>
<td>0.1419</td>
<td>0.0994</td>
<td>0.089*</td>
</tr>
<tr>
<td>N1</td>
<td>0.02343(19)</td>
<td>0.0638(4)</td>
<td>0.21228(18)</td>
<td>0.0376(6)</td>
</tr>
</tbody>
</table>

© 2017 Yong Hong et al., published by De Gruyter.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Table 2 (continued)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso*/Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2</td>
<td>-0.03684(19)</td>
<td>0.2107(4)</td>
<td>0.03842(18)</td>
<td>0.0416(6)</td>
</tr>
<tr>
<td>O1</td>
<td>0.20455(17)</td>
<td>-0.0221(4)</td>
<td>0.18116(16)</td>
<td>0.0517(6)</td>
</tr>
<tr>
<td>H1</td>
<td>0.14554</td>
<td>0.00454</td>
<td>0.1677</td>
<td>0.077*</td>
</tr>
<tr>
<td>O2</td>
<td>0.03179(18)</td>
<td>0.3047(6)</td>
<td>0.07455(17)</td>
<td>0.0596(7)</td>
</tr>
<tr>
<td>O3</td>
<td>-0.0484(2)</td>
<td>0.1801(6)</td>
<td>-0.04213(17)</td>
<td>0.0613(7)</td>
</tr>
</tbody>
</table>

Experimental details

The H atoms were positioned geometrically with d(C–H) = 0.93–0.98 Å and refined as riding with Uiso(H) = 1.2 Ueq(carrier) or 1.5 Ueq(methyl).

Discussion

Schiff bases of salicylaldehyde with amines (anils) comprise a chemical system undergoing hydrogen-atom tautomerism between enol and keto forms and show the phenomena of solid state photochromism and thermochromism [4]. Compared with crystal structure of the related Schiff base [5], the title compound with electron-withdrawing bromo substituents (cf. the figure) clearly shows the enol form.

The molecule displays an E-configuration at the central C6=N2 bond. The dihedral angle between the two substitutated phenyl moieties (C1–C2–C3–C4–C5–C6 and C8–C9–C10–C11–C12–C13) is 35.34°. There is an intramolecular O–H···N hydrogen bond molecular structure of the title compound. All bond lengths and angles are in the expected ranges.

Acknowledgements: This work was financially supported by National Natural Science Foundation of China (Grant No.21461007, 21366011) and Applied Basic Research Project in Yunnan Province (Grant No. 2013FZ121), Open Fund of Master Construction Discipline in Yunnan Province (Grant No. HXB1401).

References