Crystal structure of \((E)-2-(((6\text{-}bromopyridin}-2\text{-}y\text{l})\text{methylene})\text{amino})\text{-}3',6'$\text{-}bis(ethylamino)-2',7'$\text{-}dimethylspiro[isoindoline-1,9'$\text{-}xanthen]-3\text{-}one—methanol (1:1), C$_{32}$H$_{30}$N$_{5}$O$_{2}$Br \cdot CH$_{4}$O

Table 1: Data collection and handling.

<table>
<thead>
<tr>
<th>Crystal:</th>
<th>Yellow plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size:</td>
<td>0.20 \times 0.10 \times 0.05 mm</td>
</tr>
<tr>
<td>Wavelength:</td>
<td>Cu Kα radiation (1.54184 Å)</td>
</tr>
<tr>
<td>μ:</td>
<td>2.17 mm$^{-1}$</td>
</tr>
<tr>
<td>Diffractometer, scan mode:</td>
<td>SuperNova, ω</td>
</tr>
<tr>
<td>$\theta_{\text{max}}, \theta_{\text{min}}$, completeness:</td>
<td>71.4°, >99%</td>
</tr>
<tr>
<td>$N(hkl)${measured}, $N(hkl)${unique}, R_{int}:</td>
<td>10106, 5746, 0.019</td>
</tr>
<tr>
<td>Criterion for I_{obs}, $N(hkl)$_{gt}:</td>
<td>$I_{\text{obs}} > 2 \sigma(I_{\text{obs}})$, 5452</td>
</tr>
<tr>
<td>N_{param} refined:</td>
<td>389</td>
</tr>
<tr>
<td>Programs:</td>
<td>CrysAlis PRO [1], Olex2 [2], SHELX [3, 4]</td>
</tr>
</tbody>
</table>

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_{iso}/U_{eq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br1</td>
<td>0.7884(3)</td>
<td>0.3099(3)</td>
<td>0.4526(2)</td>
<td>0.0381(2)</td>
</tr>
<tr>
<td>O1</td>
<td>0.5079(2)</td>
<td>0.9243(15)</td>
<td>0.7564(9)</td>
<td>0.0403(6)</td>
</tr>
<tr>
<td>O2</td>
<td>0.4830(14)</td>
<td>0.2341(13)</td>
<td>0.7865(7)</td>
<td>0.0214(3)</td>
</tr>
<tr>
<td>O3</td>
<td>0.6596(15)</td>
<td>1.0378(16)</td>
<td>0.6401(9)</td>
<td>0.0317(3)</td>
</tr>
<tr>
<td>H3A</td>
<td>0.6267</td>
<td>0.9873</td>
<td>0.6732</td>
<td>0.047*</td>
</tr>
<tr>
<td>N1</td>
<td>0.6740(16)</td>
<td>0.4655(17)</td>
<td>0.5536(8)</td>
<td>0.0192(3)</td>
</tr>
<tr>
<td>N2</td>
<td>0.5523(16)</td>
<td>0.6813(16)</td>
<td>0.6850(8)</td>
<td>0.0165(3)</td>
</tr>
<tr>
<td>N3</td>
<td>0.4975(15)</td>
<td>0.7403(15)</td>
<td>0.7510(8)</td>
<td>0.0146(3)</td>
</tr>
<tr>
<td>N4</td>
<td>0.9901(18)</td>
<td>0.3258(18)</td>
<td>0.8954(8)</td>
<td>0.0205(3)</td>
</tr>
<tr>
<td>H4</td>
<td>1.066(3)</td>
<td>0.378(3)</td>
<td>0.8949(14)</td>
<td>0.0307(3)</td>
</tr>
<tr>
<td>N5</td>
<td>-0.0139(18)</td>
<td>0.8897(18)</td>
<td>0.6689(10)</td>
<td>0.0279(4)</td>
</tr>
<tr>
<td>H5</td>
<td>-0.0963</td>
<td>0.1137</td>
<td>0.6518</td>
<td>0.034*</td>
</tr>
<tr>
<td>C1</td>
<td>0.7342(2)</td>
<td>0.4802(2)</td>
<td>0.4913(10)</td>
<td>0.0236(6)</td>
</tr>
<tr>
<td>C2</td>
<td>0.7627(2)</td>
<td>0.6074(2)</td>
<td>0.4533(10)</td>
<td>0.0282(4)</td>
</tr>
<tr>
<td>H2</td>
<td>0.8061</td>
<td>0.6104</td>
<td>0.4098</td>
<td>0.034*</td>
</tr>
<tr>
<td>C3</td>
<td>0.7239(2)</td>
<td>0.7297(2)</td>
<td>0.4829(10)</td>
<td>0.0269(4)</td>
</tr>
<tr>
<td>H3</td>
<td>0.7403</td>
<td>0.8177</td>
<td>0.4591</td>
<td>0.032*</td>
</tr>
<tr>
<td>C4</td>
<td>0.6602(2)</td>
<td>0.7205(2)</td>
<td>0.5483(10)</td>
<td>0.0220(4)</td>
</tr>
<tr>
<td>H4A</td>
<td>0.6333</td>
<td>0.8015</td>
<td>0.5691</td>
<td>0.025*</td>
</tr>
<tr>
<td>C5</td>
<td>0.6377(18)</td>
<td>0.5863(18)</td>
<td>0.5820(9)</td>
<td>0.0171(3)</td>
</tr>
<tr>
<td>C6</td>
<td>0.5745(18)</td>
<td>0.5673(18)</td>
<td>0.6525(9)</td>
<td>0.0160(3)</td>
</tr>
<tr>
<td>H6</td>
<td>0.5522</td>
<td>0.4756</td>
<td>0.6725</td>
<td>0.019*</td>
</tr>
<tr>
<td>C7</td>
<td>0.4831(2)</td>
<td>0.8047(19)</td>
<td>0.7831(11)</td>
<td>0.0223(4)</td>
</tr>
<tr>
<td>C8</td>
<td>0.4361(19)</td>
<td>0.7690(19)</td>
<td>0.8556(10)</td>
<td>0.0190(3)</td>
</tr>
<tr>
<td>C9</td>
<td>0.4092(2)</td>
<td>0.8627(2)</td>
<td>0.9103(8)</td>
<td>0.0245(4)</td>
</tr>
<tr>
<td>H9</td>
<td>0.4148</td>
<td>0.9619</td>
<td>0.9030</td>
<td>0.029*</td>
</tr>
<tr>
<td>C10</td>
<td>0.3740(2)</td>
<td>0.8026(2)</td>
<td>0.9759(10)</td>
<td>0.0249(4)</td>
</tr>
<tr>
<td>H10</td>
<td>0.3563</td>
<td>0.8623</td>
<td>1.0136</td>
<td>0.030*</td>
</tr>
</tbody>
</table>

*Corresponding author: Ai-Ping Xing, Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China, e-mail: hnxap@hactcm.edu.cn

Dai Zeng: Henan University of Chinese Medicine, Zhengzhou 450046, P.R. China

Open Access. © 2019 Ai-Ping Xing et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License.
Table 2 (continued)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso*/Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11</td>
<td>0.36478(19)</td>
<td>0.6531(2)</td>
<td>0.98620(10)</td>
<td>0.0215(4)</td>
</tr>
<tr>
<td>H11</td>
<td>0.3409</td>
<td>0.6147</td>
<td>1.0306</td>
<td>0.026*</td>
</tr>
<tr>
<td>C12</td>
<td>0.39081(18)</td>
<td>0.56050(19)</td>
<td>0.93086(9)</td>
<td>0.0169(3)</td>
</tr>
<tr>
<td>H12</td>
<td>0.3842</td>
<td>0.4609</td>
<td>0.9377</td>
<td>0.020*</td>
</tr>
<tr>
<td>C13</td>
<td>0.42680(17)</td>
<td>0.62134(18)</td>
<td>0.86546(9)</td>
<td>0.0141(3)</td>
</tr>
<tr>
<td>C14</td>
<td>0.46751(18)</td>
<td>0.54505(17)</td>
<td>0.79891(8)</td>
<td>0.0127(3)</td>
</tr>
<tr>
<td>C15</td>
<td>0.33898(18)</td>
<td>0.42390(17)</td>
<td>0.76589(8)</td>
<td>0.0132(3)</td>
</tr>
<tr>
<td>C16</td>
<td>0.19806(18)</td>
<td>0.45211(18)</td>
<td>0.73991(8)</td>
<td>0.0147(3)</td>
</tr>
<tr>
<td>H16</td>
<td>0.1847</td>
<td>0.5480</td>
<td>0.7433</td>
<td>0.018*</td>
</tr>
<tr>
<td>C17</td>
<td>0.07825(18)</td>
<td>0.34380(19)</td>
<td>0.70950(9)</td>
<td>0.0156(3)</td>
</tr>
<tr>
<td>C18</td>
<td>0.0989(2)</td>
<td>0.19716(19)</td>
<td>0.70335(9)</td>
<td>0.0189(3)</td>
</tr>
<tr>
<td>C19</td>
<td>0.2375(2)</td>
<td>0.16709(19)</td>
<td>0.73041(10)</td>
<td>0.0196(4)</td>
</tr>
<tr>
<td>H19</td>
<td>0.2519</td>
<td>0.0715</td>
<td>0.7279</td>
<td>0.024*</td>
</tr>
<tr>
<td>C20</td>
<td>0.35380(19)</td>
<td>0.27985(18)</td>
<td>0.76104(9)</td>
<td>0.0160(3)</td>
</tr>
<tr>
<td>C21</td>
<td>0.60718(19)</td>
<td>0.33800(18)</td>
<td>0.81394(9)</td>
<td>0.0149(3)</td>
</tr>
<tr>
<td>C22</td>
<td>0.73331(19)</td>
<td>0.28247(19)</td>
<td>0.83740(9)</td>
<td>0.0164(3)</td>
</tr>
<tr>
<td>H22</td>
<td>0.7289</td>
<td>0.1821</td>
<td>0.8335</td>
<td>0.020*</td>
</tr>
<tr>
<td>C23</td>
<td>0.86612(19)</td>
<td>0.37787(19)</td>
<td>0.86671(9)</td>
<td>0.0166(3)</td>
</tr>
<tr>
<td>C24</td>
<td>0.87216(19)</td>
<td>0.53128(19)</td>
<td>0.87018(9)</td>
<td>0.0172(3)</td>
</tr>
<tr>
<td>C25</td>
<td>0.74419(18)</td>
<td>0.58040(18)</td>
<td>0.84643(9)</td>
<td>0.0156(3)</td>
</tr>
<tr>
<td>H25</td>
<td>0.7482</td>
<td>0.6808</td>
<td>0.8491</td>
<td>0.019*</td>
</tr>
<tr>
<td>C26</td>
<td>0.60813(18)</td>
<td>0.48628(18)</td>
<td>0.81841(8)</td>
<td>0.0132(3)</td>
</tr>
<tr>
<td>C27</td>
<td>1.01381(19)</td>
<td>0.6371(2)</td>
<td>0.90136(11)</td>
<td>0.0235(4)</td>
</tr>
<tr>
<td>H27A</td>
<td>0.9978</td>
<td>0.7355</td>
<td>0.8996</td>
<td>0.035*</td>
</tr>
<tr>
<td>H27B</td>
<td>1.0948</td>
<td>0.6286</td>
<td>0.8732</td>
<td>0.035*</td>
</tr>
<tr>
<td>H27C</td>
<td>1.0393</td>
<td>0.6149</td>
<td>0.9508</td>
<td>0.035*</td>
</tr>
<tr>
<td>C28</td>
<td>−0.06798(19)</td>
<td>0.38042(19)</td>
<td>0.67836(10)</td>
<td>0.0212(4)</td>
</tr>
<tr>
<td>H28A</td>
<td>−0.0640</td>
<td>0.4828</td>
<td>0.6877</td>
<td>0.032*</td>
</tr>
<tr>
<td>H28B</td>
<td>−0.1501</td>
<td>0.3228</td>
<td>0.7008</td>
<td>0.032*</td>
</tr>
<tr>
<td>H28C</td>
<td>−0.0829</td>
<td>0.3587</td>
<td>0.6268</td>
<td>0.032*</td>
</tr>
<tr>
<td>C29</td>
<td>0.99252(18)</td>
<td>0.17102(18)</td>
<td>0.89142(11)</td>
<td>0.0259(4)</td>
</tr>
<tr>
<td>H29A</td>
<td>0.9780</td>
<td>0.1361</td>
<td>0.8408</td>
<td>0.031*</td>
</tr>
<tr>
<td>H29B</td>
<td>0.9103</td>
<td>0.1160</td>
<td>0.9158</td>
<td>0.031*</td>
</tr>
<tr>
<td>C30</td>
<td>1.14202(18)</td>
<td>0.16543(19)</td>
<td>0.92711(13)</td>
<td>0.0354(5)</td>
</tr>
<tr>
<td>H30A</td>
<td>1.2224</td>
<td>0.1928</td>
<td>0.9003</td>
<td>0.053*</td>
</tr>
<tr>
<td>H30B</td>
<td>1.1390</td>
<td>0.0419</td>
<td>0.9272</td>
<td>0.053*</td>
</tr>
<tr>
<td>H30C</td>
<td>1.1591</td>
<td>0.1853</td>
<td>0.9763</td>
<td>0.053*</td>
</tr>
<tr>
<td>C31</td>
<td>−0.00243(3)</td>
<td>−0.06192(6)</td>
<td>0.65998(14)</td>
<td>0.0384(5)</td>
</tr>
<tr>
<td>H31A</td>
<td>0.0972</td>
<td>−0.0665</td>
<td>0.6466</td>
<td>0.046*</td>
</tr>
<tr>
<td>H31B</td>
<td>−0.0757</td>
<td>−0.1089</td>
<td>0.6203</td>
<td>0.046*</td>
</tr>
<tr>
<td>C32</td>
<td>−0.02863(3)</td>
<td>−0.14853(3)</td>
<td>0.72768(19)</td>
<td>0.0579(8)</td>
</tr>
<tr>
<td>H32A</td>
<td>−0.0159</td>
<td>−0.2466</td>
<td>0.7189</td>
<td>0.087*</td>
</tr>
<tr>
<td>H32B</td>
<td>−0.1292</td>
<td>−0.1515</td>
<td>0.7396</td>
<td>0.087*</td>
</tr>
<tr>
<td>C33</td>
<td>0.0428</td>
<td>−0.1021</td>
<td>0.7675</td>
<td>0.087*</td>
</tr>
<tr>
<td>H33A</td>
<td>0.54382(2)</td>
<td>1.09812(6)</td>
<td>0.60476(12)</td>
<td>0.0307(4)</td>
</tr>
<tr>
<td>H33B</td>
<td>0.4988</td>
<td>1.1466</td>
<td>0.6402</td>
<td>0.046*</td>
</tr>
<tr>
<td>H33C</td>
<td>0.4683</td>
<td>1.0211</td>
<td>0.5793</td>
<td>0.046*</td>
</tr>
</tbody>
</table>

Rhodamine-6G hydrazide powder (2 mmol, 0.856 g) was dispersed in 20 mL absolute ethanol. 15 mL of an ethanol solution of 6-bromo-2-pyridinecarbaldehyde (2 mmol, 0.372 g) were added to the above dispersion. The reaction occurred immediately at the liquid-solid interface. After refluxing for 5 h under stirring, a light yellow precipitate appeared. The precipitate was filtered, washed 3 times with ethanol/water (1:1). Yield: ca 80%. The light yellow powder (0.05 mmol, 29.8 mg) was dissolved in methanol (15 mL) to give a light yellow solution which was left to evaporate slowly at room temperature. Light yellow crystals of the title compound were obtained after one week.

Experimental details

H atoms were added geometrically using riding models and refined isotropically. Their Uiso values were set to 1.2Ueq or 1.5Ueq of the parent atoms, as appropriate. The amine hydrogen atoms were initially freely refined. In a second step, after checking the geometry, one of them was treated as riding using the SHELXL AFIX 43 command.

Comment

Rhodamine derivatives have been widely studied as fluorescent probe and chemosensors [5–7] for their excellent spectroscopic properties [8, 9]. The title compound not only contains the xanthene fluorophore, but also has the ability to coordinate transition and rare-earth metals. So, it is in theory possible to obtain magnetic-fluorescent bifunctional complexes using this compound as a ligand. Multi-functional materials have attracted considerable attention in a variety of research fields [10, 11].

The asymmetric unit of the title compound consists of a rhodamine-based molecule and a methanol solvent molecule. The bond length of C6–N2 is 1.278(2) Å, which shows that the existence of Schiff base C=N. All bond lengths are within the expected range. Molecules of the rhodamine derivative are bridged via hydrogen bonding to methanol to form a one dimensional hydrogen-bonded chain, with methanol acting as a single hydrogen-bond donor and as a double acceptor. C–H···π and π–π contacts further stabilise the crystal structure.

Acknowledgements: This work was supported by the Doctoral Research Fund of Henan University of Chinese Medicine (No. BSJJ2015–26) and the key scientific research project of colleges and universities in Henan Province (19B350004).

References