The effect of kaolin modification of silane coupling agents on the properties of the polyethylene composites

Ludwik Domka1, Adrianna Malicka1, 2, Natalia Stachowiak1

1. A. Mickiewicz University, Department of Metalorganic Chemistry, Poznań, Poland
2. A. Mickiewicz University, Department of Macromolecular Physics, Poznań, Poland
e-mail: domkal@amu.edu.pl; malicka@amu.edu.pl; natara@len.pl

This paper shows the results of using the modified kaolin by silane coupling agents in HDPE composite and the effect of surface modifications of fillers on the properties of polyethylene composites. In the first stage pure and modified kaolin was subjected to a number of tests in order to determine the backfill density, water and paraffin oil absorbability, the surface area and pore volume, the morphology of their grains, thermal analysis and the FT-IR spectroscopy.

In the second stage the composites, which were moulded into the samples that could be subjected to further tests, were produced. The samples were characterised by the determination of the hardness according to Shore, the elasticity modulus, the tensile strength and tearing strength.

The modification of the kaolin surface has resulted in a substantial improvement of the strength parameters of the obtained polyethylene composites.

Keywords: kaolin/HDPE composites, modified fillers, silane coupling agents.

INTRODUCTION

Kaolin is a mineral filler of natural origin most often used in the production of plastic and elastomer materials. The composites obtained after their introduction into the polymer matrix are characterised by the improved strengthening physical properties. One of the main components of kaolin is the mineral kaolinite, being hydrated alumina silicate of the formula: Al₂O₃·2SiO₂·2H₂O. Kaolinite is 1:1 dioctahedral clay mineral composed of structurally asymmetric layers. One side of the layer is gibbsite-like with aluminium atoms coordinated octahedrally with applied oxygen atoms and hydroxyls. The other side of the layer is constituted by the silicate layer structure, where the silicon atoms are coordinated tetrahedrally to oxygen. At the interface of each group of the layers there are hydroxyl groups. Three fourth of the OH groups being the external hydroxide groups are at the surface of a kaolinite packet and their protons take part in hydrogen bonds of the lengths of 3.13, 3.00 and 2.29 Å. The other OH groups are inside the packet; they are called the internal hydroxyl groups, and are involved in the shortest hydrogen bonds of 2.96 Å. Hydrogen bond formation changes the polarization of the OH bonds so that the positive charge is shifted towards the protons. The lamellar structure of the kaolinite is responsible for their excellent cleavage and easy separability into thin sheets. The lamellar packets are electrically neutral. The packets are linked through the hydrogen bonds made with the involvement of the hydroxyl groups coordinated about a single packet and about the silica atoms in the neighbouring packet. The paper reports on the production of kaolin filled polymers, their characterisation and the effects of the kaolin modifications with silane coupling agents significantly improving the strength of the composites.

EXPERIMENTAL

Substrates

The KOG kaolin from the Surmin-Kaolin mine in Nowogrodziec near Bolesławiec was used. The kaolin surface was modified with the following silane-coupling agents made by Unisil, Tarnów:
- 3-isocyanatepropytrimethoxysilane 3iso
- 3-aminopropytrimethoxysilane 3A
- N-2-aminoethyl 3-aminopropytrimethoxysilane N2
- Vinyltr trimethoxysilane V
- 3-methacryloyloxypropytrimetoxysilane M
- 3-chloropropytrimethoxysilane Ch

Modification of fillers

The surface modification was performed at room temperature in a 1:1 water-ethanol solution with a 1 – 3% vol addition of the silane coupling agent, in the MPW-309 mixer until the plastification of the plastic solid. The air-dried sample was ground in the mortar and sieved through a mesh size 0.063mm.

Filler testing

Pure and modified kaolin was subjected to a number of tests in order to determine their bulk density PN-80/C-04400/03, water4 and paraffin oil absorbability PN-87/C-04404/1. The surface area and pore volume distribution were determined on the ASAP 2010 Sorptometer and the SEM photographs of the samples were taken to assess the morphology of their grains by the PHILIPS SEM 515. The gravimetric measurements (TG, DTG, DTA methods) were determined on a thermogravimeter Setaram TGA. The IR spectra were taken on the Bruker FT-IR spectrometer.

Composite preparation

Polyethylene Hostallen ACP 5831 D made by Basell Orlen Polyolefins was selected because of a wide range of applications for the production of objects that have to...
show high mechanical strength. The composites with the modified fillers were produced at the Institute of Plastics Processing „Metalchem” in Toruń, using a screw extruder BTSK 20/40D made by Bühler. There were 4% of fillers in the composites. The composites were moulded into the samples that could be subjected to further tests.

Composite testing
The samples were characterised by the hardness according to the Shore scale PN-80C/04238, the PN-EN ISO 527/1998 elasticity modulus, the tensile strength and tearing strength at the TIRA test 27025 stand PN-EN ISO 527/1998.

RESULTS AND DISCUSSION

Table 1. The absorbing capacities and the bulk density of kaolins

<table>
<thead>
<tr>
<th>Type of the filler</th>
<th>Water absorbing capacity [cm³/100g]</th>
<th>Paraffin oil absorbing capacity [cm³/100g]</th>
<th>Bulk density [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure kaolin</td>
<td>150±50</td>
<td>50±50</td>
<td>1.56±0.01</td>
</tr>
<tr>
<td>Kaolin modified with 3-isocyanatoctyltrimethoxysilane</td>
<td>160±50</td>
<td>200±50</td>
<td>1.68±0.01</td>
</tr>
<tr>
<td>Kaolin modified with 3-aminopropytriethoxysilane</td>
<td>200±50</td>
<td>220±50</td>
<td>1.70±0.01</td>
</tr>
<tr>
<td>Kaolin modified with N,2-aminopropytrimethoxysilane</td>
<td>250±50</td>
<td>250±50</td>
<td>1.73±0.01</td>
</tr>
<tr>
<td>Kaolin modified with vinyltriethoxysilane</td>
<td>300±50</td>
<td>90±50</td>
<td>1.78±0.01</td>
</tr>
<tr>
<td>Kaolin modified with 3-methacycloxypropyltrimethoxysilane</td>
<td>400±50</td>
<td>100±50</td>
<td>1.84±0.01</td>
</tr>
<tr>
<td>Kaolin modified with 3-chloropropytrimethoxysilane</td>
<td>390±50</td>
<td>70±50</td>
<td>1.89±0.01</td>
</tr>
</tbody>
</table>

The modification of kaolin with silane coupling agents significantly improves the physicochemical parameters of the mineral fillers (Tables 1 – 3). The surface area increased, the pore sizes are reduced, the bulk density increases and the hydrophilous-hydrophobic properties were improved. The obtained fillers are characterised by significant thermal stability (Figs. 1 – 4).

On heating the samples release the water that can originate from the following:

Figure 1. The TG-Thermogravimetric curves of the kaolin samples

Figure 2. The DTG-Thermogravimetric curves of the kaolin samples
– the multilayer adsorbed water that can be released at 125°C
– the monolayer adsorbed water released completely above 250°C
– the water liberated in the process of the decomposition of the organic compounds of lignin and tannin, making about 0.05 – 1.8% of the water contained in kaolin

Figure 3. The DTA curves of the kaolin samples

Figure 4. The FT-IR spectrum of kaolins in the range of 4000 – 400 cm\(^{-1}\)

– the dehydroxylation water liberated as a result of the transition of the octahedral aluminol group to the tetrahedral aluminooxane group at temperatures ranging from 350 do 700°C, corresponding to the temperatures of kaolin calcination,
– the chemically bound water; at about 900°C the remaining OH groups are lost leading to the formation of the aluminium-silica spinel Al\(_2\)O\(_3\)-SiO\(_2\) and silica,

Photo 1. Pure kaolin mined in KOG „Surmin-Kaolin” in Nowogrodziec

Photo 2. Kaolin modified of 3-chloropropyltrimethoxysilane

Photo 3. Kaolin modified of 3-isocyanatepropyltrimethoxysilane

Photo 4. Kaolin modified of 3-aminopropyltriethoxysilane
In the range of $1150 - 1225^\circ C$ the spinel phase is transformed into mullite and the silica becomes cristobalite. The results of the FT-IR study confirm the presence of kaolinite by revealing four characteristic absorption bands, at about 3600 cm^{-1} assigned to the OH groups vibrations. The absorption bands permit the identification of the types of lamellar silicates as the spectrum of halloysite showed two bands, while those of nakrite and dyckit show three bands. The bands, characteristic of kaolinite are at 3700 and 3620 cm^{-1}, whose presence also indicates a high degree of the system ordering. At about 1680 and 1230 cm^{-1} there are the bands assigned to the deformation vibrations of the OH groups, testifying to the presence of the water bound in the aluminium silicate gallery. In the range of $900 - 1100 \text{ cm}^{-1}$ there are the bands typical of the Si-O
bending vibrations and the poorly separated band assigned to the Si-O stretching vibrations. A gradual decrease in the band intensity is observed above 950 cm$^{-1}$, as a result of silane species adsorption on the kaolin surface. The spectrum of kaolin modified with 3-chloropropyltrimethoxysilane shows an additional band at about 800 cm$^{-1}$, typical of the C-Cl bonds. The SEM photograph (Phot.1 – 7), of this filler shows the uniform size of the grains and a considerable increase in the surface area as a result of the formation of agglutinations and additional layers on the surface of the pseudo-hexagonal sheets. On the basis of the results obtained the most effective is the modification with 3-methacryloxypropyltrimethoxysilane and vinyltriethoxysilane as the use of such modified fillers has significantly improved the properties of polyethylene composites (greater hardness and elasticity modulus) with respect to those of the unfilled polymer and the polymer filled with the unmodified filler. The kaolin modification with the above two compounds also brings a correction in the physico- or mechanical parameters: the tearing strength and mean tensile stress increase, while the unit elongation on stretching and on tearing decreases. The SEM photographs of the composite (Phot. 8 – 15), reveal a homogeneous distribution of the modified filler in the polymer matrix, achieved thanks to the modification improved character of the filler-polymer and filler-filler interactions.
CONCLUSIONS

The modification of kaolin fillers with silane coupling agents significantly improves their physicochemical properties and hence the properties of the obtained composites. As follows from our results, the modification of the fillers with silane coupling agents substantially improves their dispersion in the polymer matrix and hence reduces the tendency towards the agglomeration of particles, leading to a decreased strength of the filler-filler interactions and the increased strength of the filler-polymer interactions. The modified fillers are stronger bonded to the polymer which improves the physico- or mechanical parameters of the composite and permits the extension of the range of their applications.

ACKNOWLEDGEMENT

This work was supported by the Polish Scientific Committee within the framework of the grant no 3 T09A 165 29

LITERATURE CITED

