Characteristics of selected second-generation antiepileptic drugs used in dogs

H. Ziółkowski¹, J.J. Jaroszewski¹, N. Ziółkowska², A. Jasiecka¹

¹ Department of Pharmacology and Toxicology
² Department of Histology and Embriology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland

Abstract

A significant number of cases of clinical canine epilepsy remain difficult to control in spite of the applied treatment. At the same time, the range of antiepileptic drugs is increasingly wide, which allows efficient treatment. In the present paper we describe the pharmacodynamics and pharmacokinetics of the newer antiepileptic drugs which were licensed after 1990 but are still not widely used in veterinary medicine. The pharmacokinetic profiles of six of these drugs were tested on dogs. The results of experimental studies suggest that second generation antiepileptic drugs may be applied in mono- as well as in poli- treatment of canine epilepsy because of the larger safety margin and more advantageous pharmacokinetic parameters. Knowledge of the drugs’ pharmacokinetics allows its proper clinical appliance, which, in turn, gives the chance to improve the efficiency of pharmacotherapy of canine epilepsy.

Key words: epilepsy, dogs, antiepileptic drugs, pharmacokinetics

Introduction

Epilepsy is the most common chronic neurological disorder in both humans and dogs. Clinically, the epilepsies are characterized by spontaneous, recurrent epileptic seizures, either convulsive or non-convulsive, which are caused by partial (focal) or generalized paroxysmal discharges in the central nervous system (CNS). In veterinary medicine the majority of canine epilepsies have been considered idiopathic (primary generalized epilepsy of unknown cause but with possible familial predisposition), and the mainstay of treatment is first generation antiepileptic drugs (first generation AEDs), such as phenobarbital (PB), potassium bromide (KBr), carbamazepine (CBZ) and benzodiazepines (BZD) (Podell et al. 1995, Rogvi-Hansen and Gram 1995, Berendt and Gram 1999). Primary or idiopathic epilepsy is diagnosed in approximately 80% of dogs with seizures (Podell et al. 1995). In human medicine during the last several years some new antiepileptic drugs were introduced (second and third generation AEDs) whereas canine epilepsy pharmacotherapy (as is the case with feline epilepsy) is based mainly on the appliance of first generation drugs, (PB being the most commonly used). This is caused, not exclusively, by the higher price of second generation drugs (in comparison to first generation antiepileptic drugs) but also by the very mediocre knowledge of the clinical efficiency and safety of the appliance of these drugs on dogs. It is worth emphasizing that in Poland, as well as in many other countries, there is a lack of antiepileptic drugs registered for use for the treatment of dogs which forces veterinarians to use drugs meant for treating epilepsy in humans.
available literature there is a significant amount of information on the efficiency of the ‘old’ generation of drugs in canine epilepsy pharmacotherapy as well as on the considerable number of side-effects (Dewey 2006, Thomas 2010). However, it is worth noting that an appreciable percentage of cases of canine epilepsy does not respond to conventional treatment, that is to treatment with the appliance of first generation drugs (Schwartz-Porsche et al. 1985). Increasing the dosage of PB and KBr may improve seizure control, while it is often linked with the intensification of side-effects such as polyuria, polydipsia, polyphagia, ataxia, hepatotoxicity, teratogenicity and embryotoxicity (Rogvi-Hansen and Gram 1995).

It is important to emphasize that the side-effects (including organ toxicity) in the case of use of the second generation drugs to humans have proven to be milder and less intense than those of many first generation drugs. Also, not insignificant is the fact that drugs such as PB or BZD prove to have serious addictive properties (Isbell and Fraser 1950, Longo and Johnson 2000), and the discontinuation of the administration of this kind of substance may negatively influence the animal’s psyche which is, in turn, linked to unfavorable change in its behavior. In favor of the second generation drugs is also the matter of their relation to CNS, in addition to the considerably lower probability of their interaction with other drugs (Table 1), which renders their use as elements of the politherapy of epilepsy safe in comparison to the first generation drugs. Taking into consideration the aforementioned aspects, one should suppose that it is only a matter of time before second generation drugs are introduced to canine epilepsy treatment, at least as alternative drugs i.e. used in case of the inefficiency or the intolerance of first generation drugs.

The present paper is an attempt at summarizing the contemporary state of knowledge of the pharmacodynamics and pharmacokinetics of selected second generation drugs applied in the treatment of dogs.

On the basis of the available test results regarding the pharmacokinetics of felbamate, gabapentin, levetiracetam, oxcarbazepine, topiramate and zonisamide used in dogs, the absorption, distribution, biotransformation and excretion of these drugs is characterized.

Felbamate

Felbamate (2-phenyl-1,3-propanediol dicarbamate; FBM) is a relatively simple molecule (Table 3) with a broad spectrum of antiepileptic activity, and its efficacy has been evaluated in several animal models of epilepsy (Swinyard et al. 1986, Giorgi et al. 1996, Wlaz and Loscher 1997, Ebert et al. 2000). FBM has been shown to be efficacious in the treatment of multiple seizure types in humans, such as simple partial, complex partial and primary generalised tonic-clonic seizures (White et al. 1992, Bourgeois et al. 1993, Sofia et al. 1993, Mellick 1995). Additionally it is effective in Lennox-Gastaut syndrome resistant to other anti-epileptic compounds (Ritter 1993). Moreover, several reports have indicated that this agent has a neuroprotective effect in a hippocampal slice and neonatal rat model (Wallis et al. 1992, Wasterlain et al. 1992, 1993, Chronopoulos et al. 1993). FBM has a multiple mechanism of action which is still not fully elucidated. It effects the N-Methyl-D-aspartic acid (NMDA) subtype of glutamate receptor (Taylor et al. 1995, Harty and Rogawski 2000), probably inhibits glutaminergic neurotransmission via \(\alpha\)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA)/kinate receptors (DeSarro et al. 1994) and potentiates \(\gamma\)-aminobutyric acid type A receptor currents (GABA\(_A\)) through a barbiturate-like modulatory effect on this receptor complex (Rho et al. 1997). This agent also has an effect on ion channels such as the \(\alpha\)-subunit of Na\(^+\) currents and high-voltage-activated Ca\(^{2+}\) channels (L-type) (Stefani et al. 1996, Taglialetela et al. 1996).

<table>
<thead>
<tr>
<th>Added drug</th>
<th>Commonly used AEDs</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBM</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>GBP</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>LEV</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>OXC</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TPM</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ZNS</td>
<td>↑</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 1. Reported effects of new antiepileptic drugs (AEDs) on plasma concentration of commonly available AEDs.
Table 2. Pharmacokinetic parameters of selected antiepileptic drugs in dogs.

<table>
<thead>
<tr>
<th>Added drug</th>
<th>Dose (mg/kg)</th>
<th>F (%)</th>
<th>Vd (L/kg)</th>
<th>t1/2kel (h)</th>
<th>CL (ml/min/kg)</th>
<th>Protein binding (%)</th>
<th>Elimination (%) urine</th>
<th>Elimination (%) feces</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBM</td>
<td>11</td>
<td>100</td>
<td>0.9-1.1</td>
<td>4.5-6.0</td>
<td>1.15-1.85</td>
<td>22-25</td>
<td>70</td>
<td>25</td>
<td>Adusumalli et al. 1991, 1992; Young et al. 1991, 1992</td>
</tr>
<tr>
<td>GBP</td>
<td>50</td>
<td>80</td>
<td>1.0</td>
<td>2.2-4.0</td>
<td>3.5-4.0</td>
<td>3</td>
<td>99</td>
<td>0.3-1.0</td>
<td>Vollmer et al. 1986; Radulovic et al. 1995; KuKanich et al. 2011</td>
</tr>
<tr>
<td>LEV</td>
<td>20, 54</td>
<td>100</td>
<td>0.45-0.6</td>
<td>2.3-4.0</td>
<td>1.5-2.3</td>
<td>0</td>
<td>89</td>
<td>Nd</td>
<td>Doheny et al. 1999; Isoherranen et al. 2001; Benedetti et al. 2004; Patterson et al. 2008</td>
</tr>
<tr>
<td>OXC</td>
<td>40</td>
<td>Nd</td>
<td>0.7-0.8</td>
<td>4.6</td>
<td>Nd</td>
<td>45</td>
<td>Nd</td>
<td>Nd</td>
<td>Schicht et al. 1996; Volosov et al. 1999</td>
</tr>
<tr>
<td>TPM</td>
<td>10, 40, 150</td>
<td>57</td>
<td>0.63</td>
<td>2.6-3.7</td>
<td>2.4-3.6</td>
<td>10</td>
<td>90</td>
<td>6</td>
<td>Streeter et al. 1995; Caldwell et al. 2005</td>
</tr>
<tr>
<td>ZNS</td>
<td>10</td>
<td>68</td>
<td>0.72</td>
<td>13-17</td>
<td>0.6</td>
<td>39.5</td>
<td>83</td>
<td>17</td>
<td>Matsumoto et al. 1983; Boothe and Perkins 2008; Orito et al. 2008</td>
</tr>
</tbody>
</table>

Table 3. Some antiepileptic drugs chemical and physical properties.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Molecular formula</th>
<th>Molecular weight [g/mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Felbamate</td>
<td></td>
<td>C₁₁H₁₄N₂O₄</td>
<td>238.23986</td>
</tr>
<tr>
<td>Gabapentin</td>
<td></td>
<td>C₉H₁₇NO₂</td>
<td>171.23678</td>
</tr>
<tr>
<td>Levetiracetam</td>
<td></td>
<td>C₈H₁₄N₂O₂</td>
<td>170.20896</td>
</tr>
<tr>
<td>Oxcarbazepine</td>
<td></td>
<td>C₁₅H₁₂N₂O₂</td>
<td>252.26798</td>
</tr>
<tr>
<td>Topiramate</td>
<td></td>
<td>C₁₆H₁₄NO₃S</td>
<td>339.36204</td>
</tr>
<tr>
<td>Zonisamide</td>
<td></td>
<td>C₅H₇N₂O₃S</td>
<td>212.22572</td>
</tr>
</tbody>
</table>
Following single oral administration of FBM at a dose of 11 mg/kg, approximately 100% (Table 2) was absorbed and absolute bioavailability (F) was unaffected by food (Adusumalli et al. 1991). Adusumalli et al. (1991, 1992) demonstrated that after multiple oral administration the maximal concentration (C_{max}) and area under the curve (AUC) were significantly smaller than in the single oral dose. These results indicate a change in the FBM disposition process after multiple dosing. In general, these changes are attributed to modifications in the absorption, distribution into tissue, and elimination of this agent. The time of maximum concentration (t_{max}) of FBM was reached in 4.0 to 5.5 h after the single and multiple oral dose, respectively and was not dependent on dose value. However, in pediatric dogs t_{max} was about 3.0 h (Adusumalli et al. 1992).

Adusumalli et al. (1991) proved that FBM is distributed readily into tissues and did not appear to accumulate in any particular tissue. It also easily crossed the blood-brain barrier (BBB), as was demonstrated by the above mentioned authors. The volume of distribution (V_d) of this agent was 0.9 to 1.1 L/kg (Table 2), however, in pediatric dogs the value reached 1.2-1.9 L/kg (Adusumalli et al. 1992). FBM bound with plasma proteins from 22 to 25% (Table 2) and the albumin was responsible for most of the binding. Red blood cells were capable of binding 40% of this agent (Adusumalli et al. 1991).

Metabolism of FBM includes only a few enzymatic biotransformation reactions such as hydroxylation, hydrolysis, oxidation, conjugation of primary metabolites with glucuronic acid. Studies by Yang et al. (1991, 1992) indicated that 45-60% of the dose of this agent was metabolized into 2-(4-hydroxyphenyl)-1,3-propanediol dicarbamate (p-OH), 2-hydroxy-2-phenyl-1,3-propanediol dicarbamate (2-OH), 2-phenyl-1,3-propanediol monocarboxamate (MCF), 3-carbamoyloxy-2-phenylpropionic acid (CPA) and 40-55% was not transformed. It should be noted that in pediatric dogs the sum of hydroxyl metabolites was significantly higher, but the contribution of each of the hydroxylation pathways did not change with age (Yang et al. 1991, 1992). This may be explained by the fact that the hydroxylation process is more efficient in the case of younger dogs than it is for adult animals. Yang et al. (1991,1992) also indicated that none of the mentioned metabolites showed anticonvulsant activity comparable to FBM. Additionally Segelman et al. (1985) showed in rats that FBM was a mild hepatic cytochrome P450 inducer, which indicates that this drug has a moderate influence on the metabolism of other substances (Table 1).

Studies by Adusumalli et al. (1991) and Young et al. (1991, 1992) demonstrated that in the urine there was about 70%, and in the feces there was approximately 25%, of the excreted drug and its metabolites (Table 2). The value of half-life time in the elimination phase ($t_{1/2\text{el}}$) for FBM was 4.5-6.0 h in adult (Table 2) and 2.5-3.5 h in pediatric dogs. The above-mentioned authors also indicate that body clearance (CL) was higher in young dogs (3.2-5.3 ml/min/kg) (Table 2) than in adult dogs (1.15-1.85 ml/min/kg), which is linked to faster metabolism of the drug.

Gabapentin

Gabapentin (1-(aminomethyl) cyclohexane acetic acid; GBP) is a cyclic GABA analogue (Table 3). Its mechanism of action, despite extensive research, remains unclear. Although gabapentin was originally synthesized as a GABA analogue, capable of penetrating the BBB, it does not possess a high affinity for either GABA$_A$ or GABA$_B$ receptors, does not influence neural uptake of GABA and does not inhibit the GABA-metabolizing enzyme such as GABA transaminase (Kelly 1998, Taylor et al. 1998, Sills 2006). Furthermore, gabapentin does not affect voltage-dependent sodium channels (the site of action of several antiepileptic drugs) and is inactive in assays for a wide range of other neurotransmitter receptors, enzymes and ion channels (Kelly 1998, Taylor et al. 1998, Sills 2006). Instead of this GBP binds intracellularly to the a2δ subunits of neuronal voltage-dependent Ca$_{2+}$ channels (L-type), which leads to reduced neurotransmitter release (Gee et al. 1996). This novel antiepileptic drug is orally active in various animal models of epilepsy (Goa and Sorkin 1993, Gee et al. 1996, Taylor et al. 1998). GBP has also been shown to be effective in decreasing the frequency of seizures in medically refractory patients with partial or generalized epilepsy (Goa and Sorkin 1993, Taylor et al. 1998). Moreover, it displays antinociceptive activity in various animal pain models and, clinically, GBP is indicated as an add-on medication for the treatment of neuropathic pain (Nicholson 2000). Furthermore, this drug could also be beneficial in several other clinical disorders such as anxiety (Pollack et al. 1998), bipolar disorder (Wang et al. 2002) and hot flashes (Loprinzi et al. 2002).

According to Radulovic et al. (1995) GBP was rapidly and extensively absorbed (about 80% of the dose) (Table 2) following oral administration (50 mg/kg). The C_{max} of the drug was reached within 1.0-3.0 h after drug administration (Vollmer et al. 1986, Radulovic et al. 1995, Rhee et al. 2008) and its value was not dependent on either of the formulations used in the experiments (a capsule or tablet). Multiple oral administration compared with single dose did not significantly influence the absolute bioavailability and C_{max} (Vollmer et al. 1986, Radulovic et al. 1995). However, there are reports (Stewart et al. 1993, Radulovic et al. 1995) indicating that the absorption...
rate could be dose-dependent. It has been suggested that the decrease in the absorption rate of GBP with increasing the dose could be related to L-amino acid transporter (Stewart et al. 1993, Stevenson 1997). Stevenson et al. (1997) suggested that plasma concentration level could be not only dose but also nutrition dependent. However, studies by Radulovic et al. (1995) indicate that absorption is not dependent on nutrition.

Vollmer et al. (1986) and Radulovic et al. (1995) have shown that GBP has negligible protein binding (less than 3% of gabapentin circulates bound to plasma protein) (Table 2). Moreover, it has been demonstrated that the Vd value of GBP was approximately 1.0 L/kg (Table 2), which suggests easy diffusion of the drug to the tissues (KuKanich et al. 2011). Furthermore, these authors showed GBP concentration in the CNS of rats was nearly half that in the blood (Vollmer et al. 1986, Radulovic et al. 1995).

Studies by Vollmer et al. (1986) and Radulovic et al. (1995) demonstrated that in dogs GBP was metabolized into N-methyl-gabapentin from 30 to 40% of the dose. Furthermore, they also found two other metabolites and their concentration was below 5% for each one.

Levetiracetam

Levetiracetam ((S)-α-ethyl-2-oxo-1-pyrrolidine acetamide; LEV) is an ethyl analogue of the nootropic drug piracetam and it has a different structure from the other second generation antiepileptic drugs (Table 3). This agent proved to be effective in a wide range of animal tests, and the antiepileptogenic effect is reached at doses below those causing neurotoxic side effects (Gower et al. 1993, Löschner and Höнак 1993, Klitgaard et al. 1998, Löschner et al. 1998). LEV is used in the treatment of many types of human seizures including simple partial, complex partial and secondary generalized seizures (Cereghino et al. 2000). Additionally, this drug has minimal effect on the pharmacokinetic disposition of other AEDs, thus it can be used as an adjuvant medication for patients with refractory epilepsy (Klitgaard et al. 1998). LEV has a unique mechanism of action which, however, is not completely understood. This drug antagonizes negative modulators (Zn²⁺, β-carbolines) of the GABAₐ and glycine receptors, thereby increasing Cl⁻ influx (Rigo et al. 2002). Interestingly, LEV does not directly activate the GABAergic receptor complex (Macdonald and Kelly 1995). Also, this drug penetrates the CNS and attaches itself to synaptic vesicle protein 2A (SV2A) in neurons, probably modulating calcium-dependent exocytosis of neurotransmitters (Xu and Bajjalieh 2001, Lynch et al. 2004). Furthermore, LEV inhibits the high-voltage-activated Ca²⁺ channels (N-type) and moderates inhibition of the K⁺ currents in the CNS (Niespodziany et al. 2001, Lukyanetz et al. 2002, Madeja et al. 2003), which may have an influence on its antiepileptic properties. It is not, however, an inhibitor of voltage-gated Na⁺ and low-voltage activated Ca²⁺ channels (T-type).

Results obtained by Benedetti et al. (2004) and Patterson et al. (2008) indicated that LEV was rapidly and almost completely (bioavailability was approximately 100%) absorbed after oral (aqueous solution, tablets) and intramuscular administration (Table 2). Values of Cmax and AUC were very similar, independent of route of administration; however, tmax was reached at 1.3-2.5 h and 0.6 h after a single oral (54 mg/kg in Benedetti et al. experiment and 20 mg/kg in Patterson et al. experiment) and intramuscular dose, respectively (Benedetti et al. 2004, Patterson et al. 2008). It was demonstrated that the multiple oral administration compared with a single dose did not change significantly above pharmacokinetic parameters (Moore et al. 2010).

The results of several reports (Doheny et al. 1999, Isoherranen et al. 2001, Benedetti et al. 2004, Patterson et al. 2008) indicate that the Vd of LEV in dogs was between 0.45 to 0.6 L/kg (Table 2), a value close to the volume of intracellular and extracellular water. In studies by Doheny et al. (1999) conducted on rats it was found that LEV easily crossed the BBB to enter both the brain extracellular and cerebrospinal fluid.
compartments. The serum free/total serum concentration ratio was approximately 1.0 and was not dependent on time and concentration (Doheny et al. 1999). This finding indicates that this agent is totally dissolved in plasma water and does not attach itself to blood proteins (Table 2). These results were also observed by Benedetti et al. (2004) in experiments conducted on mice, rats, rabbits and dogs.

LEV is relatively poorly metabolized in dogs (Benedetti et al. 2004). Approximately 40% of this agent was subject to hydrolysis and/or oxidation and the rest of the compound was not metabolized. The results of these studies showed that LEV is transformed into acidic and hydroxylated metabolites; however, the main pathway of this pharmacokinetic stage is hydroxylation (Benedetti et al. 2004). However, Benedetti et al. (2004) did not find any qualitative differences in LEV metabolism among four studied species, although the dogs appeared to oxidize levetiracetam more extensively than the rats (Benedetti et al. 2004). These authors also showed that LEV was unlikely to produce clinically relevant interactions through the induction or inhibition of cytochrome P450 enzymes.

The major route of elimination of LEV and its metabolites is via the urine (89% of the dose) (Table 2). More than 60% of the dose was excreted with urine as unchanged LEV, whereas about 25% of the drug was eliminated as metabolites (Benedetti et al. 2004). Data from several reports indicate that the t1/2kel of LEV after oral, i.v. and i.m. administration of the drug ranged from 2.3 to 4.0 h (Table 2) and the value of this parameter was not dose dependent (Doheny et al. 1999, Isoherranen et al. 2001, Benedetti et al. 2004, Patterson et al. 2008, Moore et al. 2010). In the above-mentioned studies the CL was determined to have a value from 1.5 to 2.3 ml/kg/min (Table 2) and its value was not dependent on dose and route of drug administration.

Oxcarbazepine

Oxcarbazepine (10,11-dihydro-10-oxo-carbamazepine; OXC) is a keto analogue of carbamazepine (CBZ) (Table 3), and both oxcarbazepine and its primary metabolite 10,11-dihydro-10-hydroxy-carbamazepine (monohydroxy derivative; MHD) have similar anticonvulsant activity to carbamazepine (McLean et al. 1994). This agent proved to be effective in a wide range of animal tests (McLean et al. 1994) which suggests efficacy in generalized tonic-clonic and partial onset seizures. In humans the efficacy was confirmed in a large randomised, double-blind study (Guerreiro et al. 1997). Also, some data indicate that OXC may be useful in the management of neuropathic pain (Magenta et al. 2005). The mechanism of action of this agent is similar to that of carbamazepine. OXC inhibits voltage-gated Na+ channels (McLean et al. 1994, Benes et al. 1999), reduces high-voltage activated Ca2+ channels (L-type) evoked by membrane depolarization (Stefani et al. 1995) and also inhibits glutamate release from hippocampal nerve terminals (Ambrósio et al. 2001). Moreover, OXC stimulates K+ channels involved in the generation of burst discharges (McLean et al. 1994) and may also act by an action on adenosine A1 and A2 receptors (Fujiwara et al. 1986).

Schicht et al. (1996) showed that in healthy dogs after a single oral dose of OXC (40 mg/kg), tmax was achieved in 1.9 h, whereas MHD was achieved after 2.6 h. Bioavailability of this agent in dogs was not studied but in humans absorption was rapid and almost complete (96-99%) with little effect of food on this process (Theisohn and Heimann 1982, Degen et al. 1994).

OXC is a neutral lipophilic agent and is distributed widely. Tecoma (1999) showed that Vd in humans was between 0.7-0.8 L/kg and Volosov et al. (1999) indicated that Vd of MHD in dogs was similar (Table 2). Both OXD and MHD were bound with plasma proteins in 45% (Table 2) and 53% respectively and easily cross the BBB, as indicated by Schicht et al. (1996). Schicht et al. (1996) and Volosov et al. (1999) indicated that cerebrospinal fluid concentrations of OXC and MHD at a steady state corresponded to the concentrations of the free drugs in plasma. Moreover, Jung et al. (1997) demonstrated that MHD, after oral administration of OXD, were bound to red blood cells (RBC). Their results showed that, at all concentrations, profiles for RBC and plasma were similar, which indicates an equal distribution of MHD between erythrocytes and plasma.

In dogs the parent compound (OXC) persists in fairly high concentrations, whereas in humans and other primates this agent is almost immediately converted to the main active metabolite, MHD. This biotransformation is reached in the liver via 2 pathways. The major pathway is conversion of OXC to MHD by reduction of the keto group of parent compound mediated by cytosol arylketone reductase. After this process the MHD is conjugated with glucuronide and eliminated by the kidney. Experiments on humans show that the minor pathway is oxidation of MHD to transdiol/dihydroxy derivative (DHD) which requires microsomal cytochrome P-450 enzymes (Baruzzi et al. 1994, Tecoma 1999). Low hepatic induction indicates that OXC has negligible influence on the metabolism of other drugs (Table 1).
There is no information about OXC excretion in dogs, and in humans this agent is eliminated almost entirely through the kidneys. In humans about 96% of the parent compound or its metabolites are in the urine, 83%, as MHD or its glucuronide conjugate, and another 4-7% as DHD and 0.3-3.0% as unchanged OXC (Tecoma 1999). Schicht et al. (1996) and Volosov et al. (1999) calculated that the t_{1/2kel} of OXC and MHD was 4.6 and 3.7 h respectively and Cl was about 2.0 ml/min/kg for OXC (Table 2) and 1.5-4.0 ml/min/kg for MHD, they indicate that the t_{1/2kel} of MHD were 2-4 times lower than in humans (Dickinson et al. 1989) which indicates a higher rate of metabolism in dogs (Schicht et al. 1996).

Topiramate

Topiramate (2,3,4,5-bis-O-(1-methylethylidene)-β-D-fructopyranose sulfamate; TPM) is structurally different from other antiepileptic agents (Table 3). It is a derivative of the naturally occurring monosaccharide D-fructose and contains a sulfamate functionality. This agent has been tested in the treatment of several rodent models of epilepsy (Gardocki et al. 1986, Nakamura et al. 1994, Edmonds et al. 1996, Wauquier and Zhou 1996) and is commonly used in humans against partial onset and generalized seizures (Sachdeo et al. 1997). TPM has multiple mechanisms of action. It is an inhibitor of the AMPA/kinate subtype of glutamate of receptors (Gibbs et al. 2000) and carbonic anhydrase isoenzymes (CA) II and IV stronger than CA I, CA III, CA V, CA VI (Dodgson et al. 2000). Moreover, TPM changes the activity of some types of voltage-activated Na+ and Ca2+ channels (L-type) (Zona et al. 1996ab, Wu et al. 1998, Taverna et al. 1999, DeLorenzo et al. 2000, McLean et al. 2000, Zhang et al. 2000) and GABAA receptors (Brown et al. 1993, White et al. 1995, 1997, 2000).

In healthy dogs after a single oral dose of TPM (10, 40 and 150 mg/kg), t_{max} was achieved in 1.6-3.9 h, whereas after a multiple dose (10, 40 and 150 mg/kg for 15 days) this parameter was reached between 1.1 and 2.4 h (Streeter et al. 1995). Value of the AUC after single and multiple oral administration of TPM in a dry-filled capsule formulation was 2 times lower compared with a single oral administration of aqueous solution of this agent (175 vs 343 μg x h/ml) (Streeter et al. 1995). Absolute bioavailability of orally administered TPM seems to be dependent on the formulation of this substance. The value of this parameter for aqueous solution was about 57% (Table 2), whereas for a dry-filled capsule it was about 29%, which indicates that the aqueous solution was a better formulation of the drug.

It has been demonstrated that the Vd of TPM was approximately 0.63 L/kg (Streeter et al. 1995) (Table 2), indicating that this agent distributes into a volume that approximates to total body water. The high Vd value suggests that the drug easily diffuses in the tissues and BBB (Dodgson et al. 2000). In plasma the unbound fraction of TPM was about 90% (Table 2). Interestingly, Dodgson et al. (2000) showed that RBC were capable of binding a major portion of this drug, which was connected with binding of TPM to carbonic anhydrase isoforms.

The results of Caldwell et al. (2005) indicate that TPM is very poorly metabolized in dogs. They showed that a low percentage only of the total dosage of this agent was metabolized. In phase I of the biotransformation there were three metabolites and in phase II of this process there were four glucuronide conjugates and two sulfate conjugates. Moreover, it was found that the most dominant pathway of metabolism of TPM in dogs was probably hydrolysis at the 2,2'-o-isopropylidene group (Caldwell et al. 2005).

Caldwell et al. (2005) found that topiramate was 96% eliminated in unchanged form. About 90% of the drug was eliminated via the urine, while 6% was excreted with feces (Table 2). Moreover, they established that TPM t_{1/2kel} ranged from 2.6 to 3.7 h after a single oral dose, whereas the value of this parameter after multiple doses of the drug was between 2.0 and 3.8 h (Table 2). They thus showed that half-life time was basically independent of the number of doses; however, they also demonstrated that the value of this parameter was not dependent on TPM dose. They showed the total CL to be approximately 2.4-3.6 ml/min/kg after a single oral dose of TPM (Table 2) and 3.0-4.2 ml/min/kg after multiple oral doses (Caldwell et al. 2005). Furthermore, they established that after a single i.v. dose of TPM the value of this parameter was 1.1 ml/min/kg (Streeter et al. 1995).

Zonisamide

Zonisamide (1,2-benzisoxazole-3-methanesulfonamide; ZNS) is a synthetic 1,2-benzisoxazole derivative (Table 3) with antiepileptic activity. This agent showed anticonvulsant properties in several animal models of epilepsy as well as in patients with epilepsy (Uno et al. 1979, Masuda et al. 1980, Hashimoto et al. 2003). ZNS is effective for refractory simple and complex partial seizures, generalized convulsions including tonic-clonic seizures, myoclonic epilepsies, absence, secondary generalized or combined seizures, Lennox – Gastaut and West syndrome, and infantile spasms (Uno et al. 1972, 1979, Masuda et al. 1980, Sackellaes et al. 1985, Henry et al. 1988, Suzuki et al. 1990).
1997, Hashimoto et al. 2003), and due to its properties the drug may be applied in epilepsy treatment, in mono- as well as in polytherapy. Additionally, this agent has a neuroprotective property which is thought to be due to a different mechanism than its antiepileptic action. It prevented cerebral damage after hypoxic-ischemic challenge or a transient global forebrain ischemia (Owen et al. 1997). Moreover, there are some experimental and clinical data suggesting the efficacy of this agent in non-epileptic disorders such as Parkinson’s disease (Murata et al. 2001) and mania (Kanba et al. 1994).

ZNS has multiple mechanisms of action. It prevents repetitive neuronal firing by blocking voltage-dependent Na⁺ channels and K⁺ evoked glutamate-mediated synaptic excitation, reduces voltage-dependent Ca²⁺ channels (T-type), facilitates dopaminergic and serotonergic transmission, inhibits type-B monoamine oxidase, without affecting the activity of type-A, inhibits lipid peroxidation in the iron-induced epileptic foci of rats and it is a weak inhibitor of carbonic anhydrase (Masuda et al. 1980, Rock et al. 1989, Suzuki et al. 1992, Okada et al. 1995, 1999, Mori et al. 1998, Bialer et al. 2002). Additionally, ZNS has an inhibitory effect on excessive nitric oxide production and free radical generation including hydroxyl and nitric oxide radicals, which consequently leads to neuroprotection by stabilization of the neuron cell membrane (Mori et al. 1998).

In healthy dogs after a single oral dose of ZNS (10 mg/kg), t_{max} was achieved in 2.75 h (Boothe and Perkins 2008), whereas Orito et al. (2008) indicated t_{max} after 6.0-7.0 h (single oral dose of 5 mg/kg of ZNS). Boothe and Perkins (2008) demonstrated that t_{max} was not dependent on dosage value, and oral bioavailability based on plasma drug concentration was about 68% after a single oral dose (Table 2); they also showed that after multiple oral administration (10 mg/kg) AUC for serum, plasma and whole blood was not different from that after the first oral dose. Other research demonstrated that ZNS reached a steady state within 4 days after repeated oral administrations (5, 10, 15, 30 mg/kg) of this agent and also showed that the canine dose-C_{min} (minimal concentration) relationship, after repeated p.o. administration, exhibited linearity at 5-30 mg/kg (Fukunaga et al. 2009).

It has been demonstrated by Boothe and Perkins (2008) that following a single oral dose administration the Vd of ZNS was about 0.72 L/kg (Table 2), a value approximate to total body water (Boothe and Perkins 2008). The value of this parameter indicates facilitated drug passage through the biological barriers, including BBB, as shown by Mimaki et al. (1994) in an experiment on rats; they also showed that plasma protein binding of ZNS was approximately 39.5% (Table 2). After i.v. and p.o. administration the C_{max} was lower in serum and plasma compared to RBC, indicating that erythrocytes were binding a major portion of this drug. This is probably due to binding of ZNS to carbonic anhydrase contained within RBC (Boothe and Perkins 2008).

The results of two reports (Matsumoto et al. 1983, Boothe and Perkins 2008) showed that about 70% of ZNS was metabolized with the participation of cytochrome P-450 enzymes. In dogs the metabolism pathway is not completely understood. In rats the major metabolites were 2-(sulfamoylacetyl)-phenol glucuronide (SMAP) and SMAP-glucuronide, N-acetyl-3-(sulfamoylmethyl)-1,2-benzisoxazole (N-acetyl-ZNS), and ZNS-glucuronide. It should also be mentioned that this agent does not induce its own metabolism (Stiff and Zemaitis 1990).

Matsumoto et al. (1983) and Boothe and Perkins (2008) indicated that the major route of elimination of ZNS and its metabolites was 83% via the urine. The rest of drug was eliminated with feces (Table 2). 30% of this agent was excreted as a parent compound and the rest as the above-mentioned metabolites. The t_{1/2kel} as reported in several studies, was between 13.0-17.0 h after a single i.v. and p.o. administration (Table 2) and after multiple oral dose was about 23.5 h (Matsumoto et al. 1983, Boothe and Perkins 2008, Orito et al. 2008); in these studies the CL was determined to have a value from 0.95 to 2.5 ml/kg/min after a single i.v. administration and 0.6 ml/min/kg after a single p.o. administration (Table 2).

Summary

The comparison of pharmacokinetic parameters indicates that the second generation antiepileptic drugs will probably find wider use in canine epilepsy therapy. Unfortunately, one of the reasons for low interest in this group of pharmaceuticals is their relatively high cost in comparison to routinely applied drugs i.e. first generation drugs such as PB or CBZ. In addition, some second generation drug properties cause their administration to be difficult. For instance, only zonisamide allows administration one to two times a day. Other drugs have a short period of t_{1/2} in the elimination phase and they have to be administered much more often. This does not diminish the fact that such drugs are effective, and may be used by veterinarians in adjuvant therapies, especially in epilepsy resistant to standard treatment. Such a regimen may contribute to lowering the dosage of first generation drugs as well as to increasing the percentage of treated seizures induced by epilepsy. It should also be
taken into account that among the second generation antiepileptic drugs there are substances whose pharmacokinetics in the case of dogs have been insufficiently tested or have not been tested at all. These substances are lamotrigine, tiagabine and vigabatrin, which could also be applied in the treatment of animals.

Moreover, in human medicine third generation antiepileptic drugs have been introduced in the last several years, and some of them are used in treatment (eslicarbazepine, fosphenytoin, lacosamide, pregabalin, rufinamide, stiripentol), whilst others are still under clinical tests (brivaracetam, carbensatol, elpetrigine, fluorofelbamate, ganaxolone, losigamone, safinamide, selretacemt, soretolide, talampanel, valroocetamide).

References

Taverna S, Sancini G, Mantegazza M, Franceschetti S, Avan-

Zona C, Barbarosie M, Kawasaki H, Avoli M (1996a) Effects induced by the anticonvulsant drug topiramate on voltage-gated sodium currents generated by cerebellar granule cells in tissue culture. Epilepsia 41: S52-S60.