Cytoprotective effect of silybin against lasalocid-induced toxicity in HepG2 cells

L. Radko¹, W. Cybulski¹, W. Rzeski²

¹ Department of Pharmacology and Toxicology National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland
² Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland

Abstract

Lasalocid is an ionophore coccidiostatic agent frequently used in poultry. Its extensive use causes the formation of residues in edible tissues and eggs which may pose a risk to consumers. Silybin is the main compound extracted from the herb milk thistle Silybum marianum and its hepatoprotective effect has been reported in literature.

The aim of the study was to compare lasalocid and silybin cytotoxic effects followed by their combined use in HepG2 cell line. A cytoprotective effect resulting from the interaction of both pharmacologically active substances was measured.

In this study, an MTT test, coomassie brilliant blue binding test, and LDH release test determined the effective concentration (EC₅₀) of the compounds. The isobolograms and combination index were used to assess the nature of interaction.

The lowest EC₅₀-value for lasalocid was established via the MTT test. This study revealed a lack of silybin cytotoxic effect on the cells. Co-actions of the two drugs led to a significant decrease of lasalocid cytotoxicity. The isobolograms and combination index showed a remarkable antagonistic effect in the course of silybin and lasalocid interaction.

The results indicate that silybin revealed a cytoprotective effect when incubated with lasalocid since its cytotoxic impact on HepG2 cells has been significantly diminished.

Key words: silybin, lasalocid, cytotoxicity, protection, HepG2 cells

Introduction

Lasalocid belongs to ionophoric antibiotics, a group of chemotherapeutic agents used in veterinary practice for protection against gastrointestinal parasites (coccidiosis, caused by Eimeria sp.). These antibiotics are characterized by a narrow margin of safety, therefore they are not used in medicine because of their high toxicity to humans. Accidental cases of ionophore poisoning of people have been reported (Safran et al. 1993, Kouyoumdjian et al. 2001). In addition, concern of public health is involved due to lasalocid residues in excessive permissible concentrations revealed by monitoring of eggs and edible...
tissues (Mortier et al. 2005, Olejnik and Szpren-
gier-Juszczkiewicz 2007, Wong and Roxburgh 2010). In
vitro studies on liver cells reported that lasalocid dis-
turbed the ions membrane transport, induced a pro-
cess of mitochondrial injury and decrease of cell vi-
ability (Grinde 1983). Humans acutely poisoned by
ionophore antibiotics manifested an increase in liver

Cytoprotective agents are regarded as suitable,
biologically active substances preventing pathogenesis
of chemically-induced injury of human or animal’s
cells by restoring physiological and biochemical cell
function (Gazak et al. 2007, Avizeh et al. 2009). Nat-
urally occurring flavonoids have received increased at-
tention in the past few years because of their chemop-
reventive properties. Silybin is one of the flavonolig-
nans, tested in clinical trials, used for treating differ-
ent types of liver disease. Silybin represents 50% to
70% of silymarin, which is an active extract from fruits
and seeds of milk thistle (Silybum marianum L. Gaertn). Studies on animals and humans indicated that silymarin has got a broad spectrum of hepatop-
rotective effects in cases of the liver injured by acet-
aominophen, carbon tetrachloride, ethanol, iron over-
load, amanita mushroom poison and radiation.
Chemopreventive efficacy has been demonstrated for
different cell cultures (Wellington and Jarvis 2001,
Ramadan et al. 2002, Fraschini et al. 2002, Kren and
Walterova 2005). Data of silybin study indicate that its
activity is expressed as cell membrane stabilizers and
permeability regulators. In addition, promotion of
ribosomal RNA synthesis, antioxidative action, free
radicals scavenger properties and regulation of in-
tracellular content of glutathione have been dis-
covered.

Results of our previous study on rat FaO cells line
indicated considerable cytoprotective effect of silybin
when incubated with lasalocid. Hence, diminishing of
the ionophore cytotoxicity developed in course with
silybin interaction has been evidenced (Radko et al.
2011). The rationale for next step of the study was
a choice of human hepatoma cell lines. The literature
on HepG2 cell line proved it to be a good model of
cytotoxicity assessment impacted by xenobiotics, as
well as to estimate an interaction nature, (Ponsoda et
al. 1995, Thabrew et al. 1997, Pook et al. 2006, Cloth-

The aim the presented study was focused on as-
sessment of silybin and lasalocid effective concentra-
tions followed by their combined co-action testing in
the cultures of human liver-derived cell line, HepG2.
Impact on cell viability was evaluated by three differ-
ent endpoints at cellular level: reduction of metab-
olism activity of living cells (MTT), total cellular pro-
tein level (CBB) and lactate dehydrogenase release
(LDH) tests. Isobolography and combination index
(CI) revealed the nature of lasalocid and silybin inter-
action and its scale.

Materials and Methods

Chemicals

The following were purchased from Sigma-Al-
rdich (St. Louis, MO, USA): silybin ≥ 98%, lasalocid
sodium salt > 97%, dimethyl sulfoxide (DMSO),
3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyl tetrazolium
bromide (MTT), coomassie brilliant blue R-250 dye,
trypsin-EDTA, fetal bovine serum (FBS), antibiotic
solution (penicillin and streptomycin), and
L-glutamine. Minimal Essential Medium Eagle (MEME) was purchased from GIBCO. All other
chemicals (acetic acid, hydrochloric acid, ethanol, po-
tassium acetate) was obtained from commercial sup-
pliers and were of highest available purity.

Cell cultures

The human hepatoma cell line HepG2, obtained
from American Type Culture Collection (Manassas,
VA, USA) was incubated in MEME culture. The cul-
turing was performed according to cell line protocol
obtained from supplier. Briefly, the medium was
supplemented with foetal bovine serum, antibiotics,
and L-glutamine. These cells were cultured in 75 cm²
culture flasks and kept at 5% CO₂, 95% air, at
37°C. The medium was refreshed every 2 days and
cells were trypsinized when the cells reached 70-80%
confluence. The cells were counted using Burker’s he-
macytometer and initial cell viability was determined
with the trypan blue exclusion test. The well-grown
cells were seeded and 100 μl was placed into 96-well
plates (NUNC) at a density of 2.5×10⁵ cells/ml and
icubated for 24 h.

Exposure to drugs

The concentration ranges (1-250 μM) of lasalocid
and the same range of silybin were selected on the
basis of the results of the preliminary studies. The
stock solution of lasalocid was dissolved in DMSO,
while silybin was dissolved in ethanol. The final con-
centration of DMSO and ethanol was 0.1% in the
medium. The same final concentrations of the sol-
vents were used in the corresponding control. The
substances background effect was measured after the
incubations run without presence of cells, (a blank assay) in order to correct OD absorbance reading against tested samples. Each drug concentration was tested in six replications for 24 h. The study was repeated as three independent experiments.

MTT assay

The metabolic activity of living cells was assessed by the activity of dehydrogenases (Mosmann 1983). The MTT (3-[4.5-dimethylthiazol-2yl]-2.5-diphenyl tetrazolium bromide) was dissolved in a sterile phosphate buffer saline solution at the concentration of 5 mg/ml and sterilized by filtration through a 0.22 μm filter and protected from light by covering into aluminium foil. After incubation of the cells with the substances, 10 μl of the MTT solution was added to every well of 96-well plates and incubated for 3 h at 37°C in humidified atmosphere of 5% CO₂. Formazan crystals were solubilized overnight in an SDS buffer (10% SDS in 0.01 N HCl) and the product was quantified in the spectrophotometer by measuring absorbance at 570 nm wavelength using E-max Microplate Reader (Molecular Devices Corporation, Menlo Park, CA, USA).

Coomassie brilliant blue (CBB) assay

Total cellular protein was measured by the dye uptake being incorporated into the cells of the culture, which reflected the degree of cytotoxicity effects caused by the tested substances (Bradford 1976). The procedure was based on the INVITTOX Protocol No. 3b.

LDH assay

The lactate dehydrogenase release was determined by using the commercially available Cytotoxicity Detection Kit (LDH) (Roche Diagnostics, Poland). The assay is a mean to measure membrane integrity as a function of the amount of cytoplasmic LDH released into the medium (Sasaki et al. 1992).

Drug interaction analysis

The nature of the interaction between lasalocid and silybin was analysed with the help of isobolography based on the estimation of cytotoxic median effect (EC₅₀) (Chou and Talalay 1983).

The HepG2 cells were simultaneously incubated for 24 h with lasalocid at a median effect concentration (EC₅₀) combined with silybin range concentrations, 1-250 μM. Isoboles were defined by the effects of pair of the studied drugs. Lasalocid paired with silybin formed the basis for the additivity line. Synergism or antagonism was depicted by the linear cell-kill effects obtained by the toxic drug in combination with the interacting drug in different concentrations (Gesnner 1995). The combination index (CI) mathematically compiled a two-drug pharmacological interaction and denominated its nature (Chou and Talalay, 1983, 1984). CI values were generated over a range 0.05 to 0.95 (5%-95%) of fractional cell-kill levels. CIs of less than 1 indicated synergy, CIs equal to 1 indicated additivity, and CIs exceeding 1 indicated antagonism.

Statistical analysis

The results representing a mean values ± standard deviation (SD) were analysed using one way analysis of variance (ANOVA) with post hoc Dunnett test to determine significance relative to unexposed control. The EC₅₀ values, concentrations necessary for 50% of inhibition of viability of the cells for each substance were calculated according to Hill’s equation. These values were expressed as mean + standard error of the mean (SEM) from three independent experiments. Statistical comparisons among EC₅₀ results were performed by analysis of variance (ANOVA) followed by Tukey test. Differences were considered as statistically significant at P≤0.05.

Results

Effects of lasalocid on HepG2 cells

The cell metabolism, cellular protein content, and the integrity of cell membrane were significantly affected in a concentration-dependent manner after 24 h exposure of HepG2 cells in tested concentrations ranging from 1.0 to 250 μM, when compared to the control (P<0.05) (Fig. 1). The results of MTT, CBB and LDH assays with lasalocid EC₅₀ in HepG2 cells are shown in Table 1. The mean values of effective concentrations in MTT assay were twofold lower than for other performed tests and statistically different (P<0.05).

Effects of silybin on HepG2 cells

Silybin at concentrations higher than 25 μM decreased the cell metabolism, cellular protein content,
Fig. 1. The effect of lasalocid, silybin and silybin range concentrations in co-action with lasalocid (EC₅₀) on metabolism (MTT), total cellular protein and lactate dehydrogenase release (LDH) in human hepatoma cell line (HepG2). The values are expressed as percentage of control response and are means ±SD (n=3), * P < 0.05.

Table 1. Effective concentration, EC₅₀ (μM) of lasalocid, silybin and lasalocid EC₅₀ in co-action with silybin 1-250 μM range concentrations estimated by the metabolic activity (MTT), total cellular protein (CBB) and membrane integrity (LDH) assays on human hepatoma cell line (HepG2), mean ± SEM, (n=3).

<table>
<thead>
<tr>
<th>Methods</th>
<th>Lasalocid EC₅₀</th>
<th>Silybin EC₅₀</th>
<th>Silybin with lasalocid (~ EC₅₀)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTT</td>
<td>4.8 ± 1.2μM</td>
<td>166 ± 4.0μM</td>
<td>N/D</td>
</tr>
<tr>
<td>CBB</td>
<td>9.6 ± 0.5μM</td>
<td>178 ± 5.0μM</td>
<td>N/D</td>
</tr>
<tr>
<td>LDH</td>
<td>9.7 ± 0.5μM</td>
<td>98 ± 5.0μM</td>
<td>N/D</td>
</tr>
</tbody>
</table>

The different superscripts (a, b, c) within a column indicate significant differences between the methods (P<0.05), N/D – not determined.
and integrity of the cell membrane when compared to the control (p<0.05) (Fig. 1). The EC₅₀ for LDH release assay was about twofold lower than EC₅₀ from MTT and CBB tests (Table 1). The EC₅₀ values for silybin were of one to two-orders higher than for lasalocid.

Effects silybin on cytotoxicity of lasalocid

Silybin within 1-250 μM range concentrations in co-action with lasalocid EC₅₀ prevented a decrease of cellular metabolism, synthesis of total cellular protein and membrane integrity. The protective effect of silybin on the cells was not dose-dependent and reflected a strong interaction between these two substances (Fig. 1).

Fig. 2. Isobolograms describing the interaction of silybin with lasalocid in HepG2 cells. The isobolograms were constructed by connecting the EC₅₀ values of lasalocid with the EC₅₀ of silybin estimated by the metabolic activity (MTT), total cellular protein (CBB) and membrane integrity (LDH) assays. The black heavy lines indicate the theoretical line of additivity. The results below the additive line indicate synergism and those above the additive line denote antagonism.

Fig. 3. Values of the combination index (CI) when lasalocid (EC₅₀) was combined with silybin concentration range in HepG2 cells culture used conversion of tetrazolium salt (MTT) as an indicator of cell metabolism, coomassie brilliant blue (CBB) assay to evaluate total cellular protein and lactate dehydrogenase release (LDH) as an indicator of membrane integrity. CI value significantly higher than 1 indicates antagonism, CI not significantly different from 1 indicates addition, and CI significantly less than 1 indicates synergism (**P<0.001).

The nature of interaction

The nature of the interaction between silybin and lasalocid in the HepG2 cells line culture analyzed with the help of isobolography was depicted in Fig. 2. It shows an antagonistic character of the interaction in cell metabolism (MTT assay), synthesis of total cellular protein (CBB assay) and membrane integrity (LDH assay). Moreover, the data computed from the fractional cell-kill levels (Fa) confirmed that co-active effects of silybin and lasalocid represented antagonistic interaction. Antagonism was proven statistically, achieving combination index above 1 (CI >1) in all tested assays on HepG2 cells (Fig. 3).
Discussion

In the present study, we investigated the effective concentrations and the action of silybin on HepG2 cells simultaneously treated with lasalocid. Possible protective effects of silybin were measured using three parameters: cellular metabolism, synthesis of cellular protein and integrity of membrane.

The experimental data showed that lasalocid at low concentrations induces cytotoxic effects on HepG2 cells due to inhibition of cellular metabolism (MTT assay), diminishing cells proliferation and desintegrating of cell membrane. These results are in accordance with other study on mitochondria in different rat cultures, both primary cells and cell lines (Antonio et al. 1991, Bolkent and Zierold 2002, Radko et al. 2007, 2011). The cytotoxic mechanism of lasalocid action is associated with an impaired flow of ions (monovalent and divalent) through cellular membranes (Antonio et al. 1991). It leads to Ca²⁺ overload within mitochondria. As a result, mitochondrial damage and cellular energy deficiency occurred. Lasalocid modulates calcium levels, its excess induces swelling of liver mitochondria and inhibits lysosomal protein degradation by affecting its pH (Grinde 1983, Mehrrota et al. 1993). Discussing the mechanism of lasalocid toxicity, microsomal enzymes involvement should be considered. Their catalytic activity can lead to the formation of toxic metabolites, including reactive and free radical derivatives of the antibiotic (Grijalba et al. 1998). It is assumed that changes of the enzymes activity measured by the MTT assay may result from a mechanism induced by those reactive metabolites (Kowaltowski and Vercesi 1999).

There are many plants with medicinal and detoxication properties. One of them is milk thistle (Silybum marianum L.) containing silymarin. Silymarin is a safe substance as no acute toxicity was demonstrated. Silybin is the main component of silymarin and being a chemically standardized substance was applied in this study.

All in vitro studies indicated a lack of cytotoxicity of silybin (Antonio et al. 1991, Oh et al. 2004, Varghese et al. 2005, Dvorak et al. 2006, Pook et al. 2006, Angeli et al. 2010, Radko et al. 2011). Using cytotoxicity tests, we showed that silybin in concentrations above 25 μM led to decrease of viability and growth inhibition of HepG2 cell lines after 24 h incubation. The literature data show that at higher concentrations of silybin (> 100 μM) and exposure longer than 24 h, an apparent inhibition of cell growth with no cytotoxic effect occurred. (Varghese et al. 2005, Pook et al. 2006, Lah et al. 2007, Chen et al. 2009, Angeli et al. 2010). Comparing the silybin EC₅₀ results, value over 34 times (LDH assay), 18 times (CBB assay) and 10 times (MTT) higher than the EC₅₀ values for lasalocid were recorded. The EC₅₀ values for silybin in the MTT and CBB were 4 times higher on HepG2 cells than the EC₅₀ values for that drug on FaO cells (Radko et al. 2011). The lowest EC₅₀ values for silybin in the LDH assay mean that the primary mechanism of silybin action could be membrane integrity dysfunction and subsequently a decrease of cellular metabolism and depletion of total protein content. This mechanism of silybin action may be explained by its hydrophobic character and penetration into membrane mainly to lipid bilayer structure. However, there are no changes of biophysical properties of the membrane. Such behavior of silybin in membranes is in line with its postulated biological functions. Membrane stabilization and cell protection may correspond to the observed lack of serious side effects of this drug (Wesolowska et al. 2007). Silybin at concentrations higher than 50 μM decreased LDH activity and total cellular protein content. However, an activity decrease may result from cells getting detached from the well surface in primary human hepatocytes cultures (Dvorak et al. 2003).

Silybin and lasalocid interaction analyzed according to Chou and Talalay method provided fundamental data for assessing whether cytotoxicity induced by combination of the drugs tested is greater, equal to or smaller than would have been expected for the individual substances. Our study showed a lack of cytotoxicity effects after simultaneous lasalocid and silybin action on HepG2 line. The EC₅₀ values obtained from MTT, CBB and LDH assays analysed by isobolograms showed the lasalocid and silybin interaction which resulted in antagonism leading to protection of HepG2 cells. The in vitro study revealed that antagonistic interaction between both drugs could be accounted for different mechanisms of toxicity. Competitive binding is probably involved in these mechanisms. If the mixed components have different affinities towards the same binding site of the target cell, some of them could not be able to induce their toxicity. This nature of interaction is observed in cases of combination of silybin and phalloidin or ethanol (Loranger et al. 1982). Results of our previous studies showed an antagonistic interaction between these drugs on FaO cell line leading to a decrease of cytotoxicity of lasalocid in presence of silybin. Range of inhibition of cell viability in the previous study with rat FaO cells was similar to human HepG2 cells. However, the sensitivity of rat hepatoma cells (Radko et al. 2011) was higher than the human hepatoma cells. Hitherto, results from human cell line assays support the findings from rat FaO cell line observation on marked cytoprotective interaction between both studied drugs.
In general, it is difficult to clarify the mechanism underlying the effects of these two drugs used in combination. It is possible that the interactions of these drugs are due to some unknown mechanism related to complex perturbations of biochemical processes. Hepatocellular injury due to high levels of lasalocid seems to be the primary event. This is rarely due to the drug action itself as toxic metabolites are usually responsible for lipid peroxidation and membrane damage. The final result is hepatocytes death related to failure and depression of mitochondrial function (Sherlock and Dooley 2002). Silybin has a regulatory action on cellular and mitochondrial membrane permeability in association with an increase in membrane stability against xenobiotic injury. It can prevent the absorption of toxin into the hepatocytes by occupying the binding sites as well as inhibiting many transport proteins at the membrane. Silybin was capable of reducing not only the cytotoxicity but the genotoxic effect induced by benzo(a)pyrene, bleomycin and aflatoxin B1 (Angeli et al. 2010). However, silybin enhances the therapeutic potential of anticancer drugs such as doxorubicin, cisplatin, carboplatin and baicalin by synergistic effects for cell growth inhibition (Tyagi et al. 2004, Chen et al. 2009). The determination of either synergism or antagonism is probably an intricate balance between the concentration and type of anti-oxidants used, the class of chemotherapeutic agents administered as well as the category of cell involved (Pook et al. 2006).

The results of this study provided a complement to our previous evaluation of high cytotoxicity of lasalocid and protective properties of silybin revealed on FaO cell line (Radko et al. 2011). Since the interaction between silybin and lasalocid has never been discussed in literature, this mechanism needs more investigation in primary culture hepatocytes and verification in animal models.

Acknowledgments

The studies were conducted in the Department of Toxicology and Environmental Protection, Faculty of Veterinary Medicine, University of Life Sciences in Lublin. This study was supported by a research grant from the State Committee for Scientific Research (KBN) No N30801332/135.

References

