Half-life measurement of 7Be in host beryllium metal

By T. Ohtsuki1, K. Hirose1, K. Ohno2 and T. Morisato3

1 Research Center for Electron Photon Science, Tohoku University, 1-2-1 Mikamine, Taihaku-ku, Sendai 982-0826, Japan
2 Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
3 Accelrys K.K., Nishishinbashiki TS Building, 11F, 3-3-1 Nishishinbashiki, Minato-ku, 105-0003, Japan

Beryllium-7 / Half-life measurement / Electron capture decay / Environmental factor / Temperature dependence (293 K and 5 K) / Ion implantation

Summary. The decay rate of an electron-capture nucleus is proportional to the electron density at the nucleus. To see how the decay rate is changed by artificially, we have measured the half-life of 7Be in beryllium(Be) metal at room temperature (T=293 K) and at close to the temperature of liquid helium (T=5 K). We found that the half-life of 7Be in Be metal at T=293 K is 53.25±0.04 d, which is slightly longer than those in the hosts of graphite, lithium fluoride and other minerals, surveyed so far. Furthermore, that at T=5 K is 53.39±0.04 d, which is 0.26% longer than that at T =293 K.

1. Introduction

The constancy of nuclear half-life has been firmly established experimentally as an exponential decay law. However, there is a long-standing debate about the degree to which nuclear decay rates can be changed artificially. In one of the β-decay modes, the electron-capture (EC) decay rate depends on the density of atomic electrons within the nucleus as first suggested by Segré et al. [1, 2]. The general understanding is that the wave function of the initial and final states between atomic electrons and the nucleus, respectively, should be considered in the decay mode. The EC decay nucleus 7Be has been often used to look for effects of external-electron density on decay half-lives, by virtue of its simple electronic structure ($1s^22s^2$) in neutral Be atom and the adequacy of its half-life for measurement. Therefore, some studies have reported on how external factors, such as chemical form [3–6], host metal [7–10], pressure [11, 12], and even temperature [13] alter the decay rate(half-life).

Recently, we have produced several radioactive fullerenes [14–16], such as the 7Be endohedral C$_{60}$ (7Be@C$_{60}$) [14] and 7Be in Be metal (7Be(Me)). We have measured the half-life of 7Be in the sample of 7Be@C$_{60}$ and Be metal(7Be) by using a reference method and standard clock time. It was revealed that the half-life of 7Be inside C$_{60}$ at T=5 K was almost 1.5% shorter than that in Be metal at room temperature [13, 17]. This implied that the 7Be atoms are located in a unique environment inside C$_{60}$. This large change in the half-life is firmly caused by the electron density at the nucleus position and the magnitude of the change has also been explained theoretically [18].

Because of the uniform lattice structure (hcp) included 7Be in Be metal(7Be), the EC decay rate of the 7Be nucleus in the structure is also essentially intriguing and should be surveyed in order to compare any other situations in chemical forms, pressure, and even temperature. In the present study, we have measured the half-life of 7Be in Be metal(7Be) at both room temperature (T=293 K) and close to the temperature of liquid helium (T=5 K) by using a reference method. We compare the half-life of 7Be in Be metal(7Be) at T=293 K and 5 K, as well as in other materials.

2. Experimental procedure

Be metal (hcp lattice structure) 10 mm in diameter and 0.3 mm in thickness was utilized to produce 7Be uniformly in the Be metal. After being washed with weak HCl solution, the Be metal was sealed in a quartz tube (vacuum packed) that was 12 mm in diameter as a target. Irradiation with a bremsstrahlung (generated by 50 MeV electrons) was carried out at the Electron Linear Accelerator, Laboratory of Nuclear Science, Tohoku University. The experimental setup for the irradiation is shown in Fig. 1. The sample in a quartz tube was set in the middle of a sweep magnet placed on the axis of the electron beam. A platinum plate converter 2 mm in thickness was set in front of the sweep magnet in order to generate a bremsstrahlung. Then, the sample was irradiated only by the bremsstrahlung, and all the electrons were ruled out by the magnetic field (see Fig. 1). Therefore, the damage to the lattice of Be metal was confined to the minimum. 7Be can be produced in Be metal uniformly by the photonuclear reaction 9Be(γ,2 n)7Be. After irradiation, the sample was baked in an electric oven with vacuum packing at 1150 degrees C (the melting point of Be metal is 1278 degrees C) for a few hours to recover the lattice defect even if the defect occurs by nuclear reactions. Finally, the sample was washed again with weak HCl solution to clean the surface.

Two samples of Be metal(7Be) were prepared in the present experiment. To measure the half-life at T=293 K and 5 K, one sample of Be metal(7Be) was placed at the top of a helium (He) closed-cycle cryostat, and the other was placed at the top of a sample holder, in an automated sam-

By T. Ohtsuki, K. Hirose, K. Ohno, and T. Morisato.
The samples could then be moved precisely in front of a γ-ray detector. This allowed the decay rates of the two samples to be measured in a comparable way. The system is shown in Fig. 2. The 7Be decays directly to the $3/2^-$ ground state of 7Li with a branching of 89.6%, and goes to the first excited state in 7Li($1/2^-$ at 478 keV) with that of 10.4% which decays by γ emission to the ground state [19]. The activities of the 478 keV γ-rays emanating from 7Be were measured with a high-purity germanium (HPGe) detector (its resolution was 1.7 keV with 50% of the efficiency of a standard NaI detector) coupled to a 4096-channel pulse-height analyzer. Due to the excellent energy resolution of the HPGe-detector, a good signal-to-noise ratio was obtained. The background was reduced by a lead shield. Therefore, the background peaks did not impair the determination of the half-life of 7Be in the present experiment. The radioactivities of 7Be were uniquely detected by means of its characteristic γ-rays, and any other sources were ruled out. Here, we set the measurement duration to $T_d=21$ 600 seconds (21 480 seconds for the live measurement time and 120 seconds for the dead time of the measurement system plus the sample exchange time) for one data point. The total measuring time was 166 d, which is more than three half-lives of 7Be. The start time was taken from a time standard signal distributed via a long-wave radio center in Japan. Therefore, the uncertainty in the time measurements can be neglected. Furthermore, the low-temperature and high-temperature samples were alternatively measured each for approximately 6 h by turns. Therefore the systematic uncertainties are properly reduced in the measurements.

3. Results and discussion

A typical γ-ray spectrum obtained in the sample of Be metal(7Be) at $T=293$ K is shown in Fig. 3. The decay scheme of 7Be is also shown in the figure. The expected γ line at $E_\gamma=478$ keV and the natural background of 40K γ line at $E_\gamma=1461$ keV can be seen as two giant peaks. No peaks were seen at around $E_\gamma=478$ keV when the 7Be source was absent. The exponential decay curve of the 7Be activities for the sample of Be metal(7Be) at $T=293$ K is also shown as a function of time (days) in Fig. 4. The decay curve obtained in the present measurement was fitted including statistical errors by a Minuit program distributed from the CERN Program Library. The statistical error dominates the uncertainty in each data point in Fig. 4. The uncertainty of our meas-
measurement is given by the uncertainty of the exponential line fitted to the counts \((i.e.\ counts\ per\ second)\) of the decay spectrum. The change in the dead time in the data acquisition system is evaluated to be about 8–15 sec for all running case. Therefore, the uncertainty due to the dead time is estimated to be less than 0.04% and this value is smaller than the fitting errors of the half-life of \(^7\)Be. For the sample of Be metal\(^7\)Be at \(T=293\) K, the half-life was also obtained not only for this run but also as a reference run for that of \(^7\)Be in the sample of \(^7\)Be@C\(_{60}\) [13, 17]. Therefore, the averaged half-life of \(T_{1/2}=53.25\pm0.04\) d was precisely determined for the sample of Be metal\(^7\)Be at \(T=293\) K. In the sample of Be metal\(^7\)Be at \(T=5\) K, a half-life of \(T_{1/2}=53.39\pm0.04\) d was obtained in the present experiment. The counting rates of the natural background emanating from \(^40\)K (the 1461 keV \(\gamma\)-rays) are also shown in Fig. 4. The obtained value in counts/s for \(^40\)K was also fitted using the same procedures. It was found that the fitted line infinitely far [7–9]. In Fig. 5, the half-lives previously measured are also shown for comparison. We previously measured the half-life of \(^7\)Be in the sample of \(^7\)Be@C\(_{60}\). We found that the half-life of \(^7\)Be in a sample of \(^7\)Be@C\(_{60}\) at a temperature close to \(T=5\) K is 52.47 ± 0.04 d, this value is 1.5% shorter than that \(^7\)Be in the Be metal\(^7\)Be at \(T=293\) K [13]. Therefore, we realized 1.75% of the difference between the half-life of \(^7\)Be in \(^7\)Be@C\(_{60}\) and that in the Be metal\(^7\)Be under \(T=5\) K.

It is further intriguing to study the temperature dependence of the half-life of \(^7\)Be inside several metals. In our future study, in order to find the effects of temperature inside metals \(e.g.\) superconducting metals, we will measure the half-life of \(^7\)Be in the sample of Nb metal that is cooled to a temperature close to liquid He \((T=5\) K). The superconducting critical temperature of Nb metal is known to be 9 K. The \(^7\)Be can be produced uniformly by the \(^1\)H\((\text{Li},n)\) \(^7\)Be reaction. The \(^7\)Be beams produced by the reaction are directly utilized to implant \(^7\)Be uniformly in Nb metal. The Center for Nuclear Study (CNS), of the University of Tokyo, has been developing an extensive low-energy RI beam facility (CRIB, see Fig. 6) of the in-flight method in a joint venture with RIKEN [20]. The Nb metal is set at the target position of the CRIB beam line. The implantation is carried out with \(^7\)Be secondary beam of over \(\sim 24\) MeV. The research program got under way in 2010.

4. Conclusion

We have produced the radioactive \(^7\)Be nucleus in Be metal by the \(^8\)Be\((\gamma,2\text{n})\) \(^7\)Be reaction caused by a high energy bremsstrahlung. The half-life of \(^7\)Be in Be metal\(^7\)Be was measured using a HPGe detector taking into account a standard time. We found that the half-life of \(^7\)Be in Be metal\(^7\)Be at \(T=293\) K was \(T_{1/2}=53.25\pm0.04\) d, and that of \(^7\)Be in Be metal\(^7\)Be at \(T=5\) K was \(T_{1/2}=53.39\pm0.04\) d. The difference in the half-life values of \(^7\)Be in Be metal\(^7\)Be between \(T=293\) K and 5 K is 0.26%. The half-life value of \(^7\)Be in Be metal\(^7\)Be at \(T=5\) K is longer than any \(^7\)Be half-life in metals reported in any environment up to now. We suppose that this can be due to the temperature dependence of a lattice constant in the structure \((\text{hcp})\) of Be metal. We are investigating this by theoretical calculations.

Fig. 4. Conclusion.

Fig. 5. Half-life values of \(^7\)Be in Be metal\(^7\)Be as determined with a least-squared fit (solid circle for \(T=293\) K and solid square is for \(T=5\) K). Half-lives previously measured are also shown for comparison [7–9].
Acknowledgment. We thank the operators of the Linear Accelerator of Laboratory of Nuclear Science, Tohoku University. This work was supported by Grants-in-Aid for Co-operative Research Nos. 10640535, 12640532 and 17350024 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, by the REIMEI Research Resources of JAERI, and especially by the MITSUBISHI fund in 2006.

References