Average charge of superheavy recoil ion in helium gas

By D. Kaji1,* K. Morita1, K. Morimoto1, H. Haba1 and H. Kudo2

1 Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198, Japan
2 Department of Chemistry, Niigata University, Ikarashi, Niigata 950-2181, Japan

(Received November 27, 2009; accepted in final form January 25, 2011)

Superheavy element / Hot fusion / GARIS / Average charge / Trans-actinide / Recoil separator

Summary. The average equilibrium charges q_{ave} of heavy recoil ions moving in helium gas were measured by a gas-filled recoil ion separator (GARIS). A new empirical formula to calculate q_{ave} for superheavy recoil ions with a low velocity was derived. This formula was applicable to the search for a superheavy nuclide of 266Bh.

1. Introduction

A gas-filled recoil ion separator (GARIS) is one of the most active recoil separators in the search for a superheavy element (SHE). While operating a GARIS, the most important parameter is the average equilibrium charge q_{ave} of a recoil ion moving in a filled gas because the trajectory of the recoil ion is governed by $B\rho = 0.0227 \times A \times (v/v_0)/q_{\text{ave}}$, where $B\rho$ is the magnetic rigidity, A is the mass number, and v/v_0 is the recoil velocity expressed in Bohr velocity units ($v_0 = c/137$, where c denotes the speed of light). In a previous study, we measured the q_{ave} values of heavy recoil ions (169Tm, 208Pb, 193Bi, 196Po, 200At, 203Fr, 212Ac, 234Bk, 245Fm, 254No, and 255Lr) moving in helium gas using a GARIS [1] and, on the basis of the results, derived the following empirical formula for q_{ave} in helium gas:

$$q_{\text{ave}} = 0.625 \times (v/v_0) \times Z^{1/3}.$$ \hspace{1cm} (1)

This formula is useful in the range $9.0 \leq (v/v_0) \times Z^{1/3} \leq 19.1$. The formula was applied to the search for SHE nuclides of 263,264,265Hs, 271Ds, 272Rg, 277112, and 278113 produced by cold fusion reactions [2–9].

In this work, the measurement of q_{ave} was expanded for superheavy recoil ions produced by actinide-base fusion reactions.

2. Experimental

Heavy recoil ions were produced by actinide-based fusion reactions of 238U(22Ne, $5n$)255No [10], 248Cm(18O, $5n$)261Rf [11], and 248Cm(22Ne, $5n$)265Sg [12]. The evaporation residues (ERs) were separated from the projectiles, target residues, and light-charged particles by the GARIS and collected at the focal plane of the separator. The GARIS was filled with helium gas at a pressure of approximately 30 Pa. The optimum magnetic field for maximum transmission was identified. The nuclide was identified by two detection systems: In one system, the implantation and subsequent decays of ER were measured by a 60×60 mm2 12-strip silicon detector installed at the focal plane of the GARIS. In the other, the ER was guided into a gas-jet chamber through a Mylar window, stopped in the helium gas, attached to KCl aerosol particles, and continuously transported through a Teflon capillary to a rotating wheel apparatus called MANON for α spectrometry. Subsequent decays of the ER were finally measured using MANON. Details of the GARIS + Gas-jet + MANON system are given elsewhere [13].

3. Results and discussion

Each intensity distribution of 255No, 261Rf, and 265Sg measured by changing the magnetic field setup of the GARIS is shown in Fig. 1. For 255No, 261Rf, and 265Sg, maximum trans-

![Intensity distribution of (A) 255No, (B) 261Rf, and (C) 265Sg ions measured by changing the magnetic field setup of the GARIS.](image-url)
mission was obtained at $B\rho = 1.91, 1.75,$ and 2.06 [Tm], and the widths $\Delta B\rho/B\rho = 10.5, 12.8,$ and 8.7 [%]. The q_{ave} value was deduced from the $B\rho$ value corresponding the maximum collection of the ER. Each q_{ave} is plotted against $(v/v_0) \times Z^{1/3}$ in Fig. 2. It was found that the deviation of q_{ave} from our empirical formula in Eq. (1) increased with a decrease in $(v/v_0) \times Z^{1/3}$. Thus, a new empirical formula for the q_{ave} value of recoils produced by actinide-based fusion reactions can be derived:

$$q_{\text{ave}} = 0.242 \times (v/v_0) \times Z^{1/3} + 2.19 ,$$

(2)

This formula is useful in the range $4.6 \leq (v/v_0) \times Z^{1/3} \leq 6.8$. A change in the slope was also observed in an early work using measurements of light recoil ions in helium gas [14]. The atomic shell structure of the recoil ion might influence the charge-exchanging process in helium gas. This new formula was applied to search for a SHE nuclide of 266Bh produced by a 248Cm-based fusion reaction [15].

The $\Delta B\rho/B\rho$ value increased with a decrease in the recoil velocity. This can be explained by the multiple scattering of the recoil ions by the helium gas atoms. For example, the difference in the image size at the focal plane of the separator between nobelium isotopes with different recoil velocities is shown in Fig. 3. Additionally, these positional distributions of the ions at the focal plane were also compared with a simulation assuming that the ions change their directions due to Rutherford scattering by the helium nuclei. This suggests that the transmission of the separator decreases at low recoil velocity. The efficiency curve of the GARIS is shown in Fig. 4.

Fig. 2. [Upper part] The measured equilibrium charge q_{ave} of heavy recoil ions moving in helium gas. Circles: previous work given in [1, 2] and squares: this work. Broken line: $q_{\text{ave}} = 0.625 \times (v/v_0) \times Z^{1/3}$, solid line: $q_{\text{ave}} = 0.242 \times (v/v_0) \times Z^{1/3} + 2.19$. [Down part] Deviation from q_{ave} values predicted by $q_{\text{ave}} = 0.625 \times (v/v_0) \times Z^{1/3}$.

Fig. 3. Comparison of the image size between nobelium isotopes with different recoil velocities. Circles: 254No given in [1, 2], squares: 255No in this work. Each simulation of the angular spread by multiple scattering of recoil ions with a filled gas is denoted by a solid line. An acceptance of the 60×60 mm2 12-strips silicon detector is given in the hatched area.

Fig. 4. Efficiency curve of the GARIS as a function of the recoil velocity expressed in Bohr velocity units.

References

12. Haba, H.: RIKEN GARIS for superheavy element chemistry. 7th Workshop on Recoil Separator for Superheavy Element Chemistry (TASCA08), 31 October 2008, Darmstadt, Germany.

