Fine Needle Aspiration Biopsy (FNAB) in the Diagnosis of Hepatocellular Carcinoma: A Review

ALEXANDRA KALOGERAKI1, GEORGIOS Z. PAPADAKIS2, DIMITRIOS TAMIOŁAKIS1, ILIANA KARVELA-KALOGERAKI1, MIHAILOS KARVELAS-KALOGERAKIS1, JOHN SEGREDAKIS1, ELENI MOUSTOU1

1Department of Cytopathology, Medical School, University of Crete, University Hospital, Heraklion, Crete, Greece
2Department of Radiology and Imaging Sciences, National Institutes of Health (NIH), Clinical Center (CC), Bethesda, MD, USA (2)

Hepatocellular carcinoma (HCC) is the fifth more common cause of cancer and the third leading cause of cancer deaths worldwide. Despite advances in surgical and non surgical modalities in the treatment of HCC, a number of controversies regarding appropriate diagnostic procedures continue to evolve. A consensus statement from the European Association for the study of Liver Diseases (EASL) has been formulated to help clinicians standardize diagnostic approaches. In nodules greater than 2 cm diameter in size, diagnosis can be made if any 2 imaging studies (ultrasonography, computed tomography, magnetic resonance imaging or hepatic arteriography) show increased vascularity. Alternatively only one imaging study with an Alpha fetoprotein level more than 400ng/mL is diagnostic. Fine needle aspiration biopsy (FNAB) should be performed in cases of indeterminate radiology and in lesions sized between 1 and 2 cm. The aim of this review is to familiarize pathologists in the FNAB diagnosis of HCC in an appropriate and timely fashion.

Key words: Liver, Hepatocellular carcinoma, FNAB, cytology, immunocytochemistry.

INTRODUCTION

Hepatocellular carcinoma (HCC) represents a major health problem, and this fact has led to the development of mass screening programs in order to achieve early detection of this disease, thus allowing surgical treatment. Usually the presence of HCC is sought by ultrasonography and alpha fetoprotein.

The natural history in high-risk patients is the occurrence of dysplastic foci in a cirrhotic background from which precancerous dysplastic nodules may ensue with some transforming to become HCC [1, 2].

Early detection with appropriate therapy is still the optimal approach that offers the patient the best prognosis. Surgery, and in particular liver transplantation, is considered the best option. Advances in dynamic imaging methods have obviated the need for tissue confirmation in clinically classic cases of HCC [3-5]. Accurate tissue characterization of small well-differentiated hepatocellular nodular lesions (<2 cm) is very challenging and has significant therapeutic implications [6].

Fine needle aspiration biopsy (FNAB) is the diagnostic technique used to establish the histological diagnosis in individuals who harbor focal hepatic lesions. This procedure is easy and harmless for diagnosing abdominal tumors.

The accuracy of FNAB in focal liver lesions ranges from 73% to 94%, with sensitivities and specificities ranging from 80 to 95% and 87 to 100% respectively [7-9]. This is likely due to the difficulty of FNAB to distinguish well differentiated HCC from a regenerative cirrhotic nodule. The non diagnostic rate is reported to range from 1 to 29%. A positive predictive value of 100% and negative predictive value of 50% were reported in one study [10]. In a recent study overall, sensitivity, specificity, accuracy, and positive and negative predictive values of FNAB in the diagnosis of neoplastic lesions were 96.3%, 90.0%, 95.6%, 98.7% and 75.0%, respectively [11]. False positives are uncommon. A non diagnostic sample is defined by blood only or normal appearing hepatic parenchyma.

This review focuses in the diagnosis of HCC on FNAB and in the diagnostic utility of immunohistochemistry.

THE TECHNIQUE OF FNAB

Percutaneous FNAB biopsy performed under computed tomography (CT) or ultrasound (US) guidance with the needle size usually between...
20 and 22 gauge, has been adopted worldwide as a safe, efficient and minimally invasive, low-cost outpatient procedure for the diagnosis of focal liver lesions.

It is important to handle the aspirate quickly and optimally in order to minimize artifacts. Ideally, both direct smears and cell block should be prepared for all FNA of livers. Cell block preparation is especially useful if immunohistochemical study is required for differential diagnosis. Direct smears are made by spreading a small volume of aspirated material on prelabeled slides which can be either air-dried or fixed in 95% ethanol. The air-dried smears are stained with a modified Giemsa stain. The alcohol-fixed smears are stained with the Papanicolaou method. A cell block is then prepared from residual materials rinsed from the needle. This technique is especially advantageous in patients with advanced malignancies or who are poor surgical candidates.

REVIEWS

Endoscopic ultrasound-guided FNA (EUS-FNA) is the latest diagnostic and staging tool. It is safe, accurate and versatile but highly operator dependent. EUS-FNA can access the left lobe of the liver, hilum, proximal right lobe, gallbladder, extrahepatic biliary system and perihilar lymph nodes. It is especially useful for small and deep-seated left lobe lesions below computed tomography/Magnetic resonance imaging (CT/MRI) resolution or not easily accessible to percutaneous FNA. As such it enhances staging of liver metastases and facilitates early detection of multifocal HCC in cirrhosis [12-14, 35]. Another advantage is concurrent sampling of pancreas and liver lesions, confirming primary and metastatic malignancy in one single diagnostic encounter. EUS-FNA has high sensitivity (82-94%) and specificity (90-100%) for malignancy [15-17].

Complications of hepatic FNA are rare and include hemorrhage, bile peritonitis, bile-venous fistulas, anaphylaxis (after aspiration of a hydatic cyst) and carcinoid crisis. Tumor seeding along the needle tract, reported in 2% of patients, increased incidence of post-transplantation recurrence, and the rare fatality [18-28].

Hepatocellular carcinomas are highly heterogeneous tumors with regard to differentiation, histologic patterns (trabecular-sinusoidal, pseudo-acinar, and compact types), and cell morphology. As such, one should be fully cognizant of the challenges and limitations of FNA biopsy in the diagnosis of HCC.

HCC can be small and focal, solitary and large, multifocal or diffuse, and infiltrating. Classic HCC is usually graded into well (WD), moderately (MD) or poorly (PD) differentiated lesions [29]. Close attention should be paid to architectural details. Accurate distinction from metastases, especially unresectable lesions, is necessary for appropriate therapy. One should be aware that there are limitations to the cytodagnosis of HCC [30-33].

CYTOLOGIC FEATURES OF HCC IN FNAB’S SMEARS [29-35]

The most important cytological features of HCC are cohesive broad trabeculae (>2-cell-thick), irregular granular chromatin, multiple nucleoli, intracytoplasmic bile and atypical naked nuclei.

The cells are polygonal, with well-defined borders, granular cytoplasm, central round nucleus with well-defined nuclear membrane, distinct nucleolus and granular chromatin (Papanicolaou stain) (Fig. 1). Increased nuclear/cytoplasmic (N/C) ratio is the single most important feature favoring malignant hepatocytes. Mitoses increase with nuclear grade. Multinucleated tumor giant cells may be present. Bile appears as greenish-black intracytoplasmic droplets best detected in Giemsa-stained smears. Intracytoplasmic fat and glycogen vacuoles are common. Intracytoplasmic eosinophilic inclusions strongly support HCC. They have also been reported in ovarian, breast, lung and adrenal gland tumors, and in asbestosis lung. Intranuclear cytoplasmic inclusions are also seen. However, they are not diagnostic of a benign or malignant process.

Gomori’s silver stain for reticulin fibers is useful in distinguishing HCC from benign hepatic processes [36].

Iron (Perl’s stain positive) and glycogen (mucicarmine stain negative) within hepatocytes are nearly always associated with benign processes. HCC can contain fat (stained with Oil Red O), bile or Mallory’s hyaline, so the presence or absence of these features is of no help in distinguishing benign from malignant lesions, but only helps in supporting the hepatic origin. Bile duct epithelial cells are absent. Kupffer cells may be seen. Background may be hemorrhagic and/or necrotic.
The presence of characteristic endothelial patterns is an important feature of WD-HCC. The basketing pattern consists of groups or trabeculae of hepatocytes wrapped by endothelial cells. This pattern is specific but observed only in 50% of HCC. It is often absent in PD-HCC. The pattern is seldom seen in benign hepatic lesions or other malignancies. The other endothelial pattern consists of traversing capillaries through groups of hepatocytes. This pattern is noted in over 90% of HCC, but is less specific since it can be seen in other malignancies and rarely in some non-neoplastic liver conditions.

Fatty change can occur. HCC cells with fat vacuoles may mimic malignant lipoblasts or signet-ring adenocarcinoma cells [29, 37-40].

Focal clear-cell changes are frequent [29, 41, 42]. Diffuse clear-cell changes occur in <10% of cases of HCC. Diffuse clear-cell change is not diagnostic of malignancy, but, when present in a significant amount, can help to diagnose HCC. Clear-cell malignancy can arise in the kidney, adrenal and ovary.

Small cell type of HCC [29] is reminiscent of neuroendocrine tumors, with tendency to dissociation and microacinar formation but no obvious trabecular pattern [43, 44]. The small tumor cells show scanty cytoplasm, round nuclei, high nuclear-cytoplasmic ratio and small nucleolus; however, the “salt and pepper” chromatin of endocrine tumour is absent. Immunocytochemistry plays a helpful adjunctive role.

Spindle cell type of HCC is rare and is more likely to be seen with tumor giant cells as part of a larger tumor [45]. The pleomorphic spindle-shaped cells are indistinguishable cytologically from sarcomatous cells.

HCC with biliary differentiation [29]

Some HCC may contain tubular spaces surrounded by columnar cells with basal palisading nuclei showing strong positivity for biliary markers (AE1/3, CK19) [46] and this may imply poorer prognosis [47]. Such HCC have to be separated from the rare mixed type of Combined Hepatocellular-Cholangiocarcinoma (HCC-CC). The stem cell theory with bipotential progenitor cells capable of developing into either hepatocytes or biliary epithelial cells provides a satisfactory explanation for primary liver cancers from different stages of the cell lineage [48].

Fibrolamellar variant of HCC [9, 49-51] is rare, accounting for 1% to 2% of all cases of HCC. However, it is important to recognize this variant because it has a better prognosis. It commonly occurs in patients younger than 35 years and in a non-cirrhotic liver. The serum AFP level is often within normal range. On radiological and gross examination, fibrolamellar variant of HCC is characterized by a lobulated tumor mass with a central stellate scar. The key diagnostic features on FNA are oncocytic neoplastic cells and lamellar fibrosis. The neoplastic cells consist of abundant eosinophilic, granular cytoplasm as a result of numerous swollen mitochondria. Lamellar fibrosis
is represented by the presence of dense fibrous tissue with parallel rows of bland fibroblasts.

Combined Hepatocellular-Cholangiocarcinoma (HCC-CC) [29]

This combined (mixed) tumor is rare, containing unequivocal elements of HCC and cholangiocarcinoma (CC) that are intimately admixed with a transitional component [52, 53], not all components need to be encountered in FNA material. HCC and cholangiocarcinoma are easily recognizable.

Transitional cells with features straddling HCC and cholangiocarcinoma may predominate [54]. They may resemble malignant hepatocytes with trabecular arrangement but also exhibit acini with nuclear palisading. The transitional cells may display nuclear contour irregularities, indistinct nucleolus, and less granular cytoplasm. Mucin may not be and show polyclonal carcinoembryonic antigen (pCEA) canalicular staining.

The CC cells are AE1/3-positive and show brush border/diffuse cytoplasmic pCEA reactivity. The intermediate cells exhibit hybrid features with equivocal immunoprofiles. However, a high index of suspicion is required for this cytodiagnosis.

Diagnostic Utility of Immunocyt-histochemistry [29, 33-35, 37]

A panel of immunostains has more discriminant value. Immunohistochemical analysis is preferred on cell blocks or microbiopies and immunocytochemical approach on smears, cytocins (cytopsin is a cytology method that is specifically designed to concentrate cells such as these that are found in small numbers) and liquid-based preparations (liquid-based cytology is a technique that enables cells to be suspended in a monolayer and thus better morphological assessment is possible; it includes the preparation and evaluation of cells collected in a liquid fixative; it is being introduced in developed countries to improve the sensitivity of the Pap test, but during recent years, it has also been used for nongynecologic cytology, e.g. in breast cytology; two technologies – Thin Prep (Cytyc Corp.) and SurePap (Tripath imaging, Inc.) have been more widely used). It may not always be possible to distinguish between the poorly differentiated entities of HCC, CC and metastatic carcinomas [55, 56]. Adenocarcinomas occurring in the liver may be metastatic or primary in origin. Of interest lately is the increasing documentation of AFP – producing extrahepatic hepatoid/non-hepatoid carcinomas that have a propensity for vascular invasion and liver metastases [57, 58]. The immunological profile of these tumors, originating mostly in the GIT and lungs, is almost identical to that of HCC. Serum AFP levels tend to be very high. For ascertainment of malignancy-on FNABs-in HCC, the antibody panel should comprise at least Alpha-fetoprotein (AFP), Polyclonal carcinoembryonic antigen (pCEA), cluster of differentiation 10 (CD10), cluster of differentiation 34 (CD34) [59, 60]. Additional markers, such as Hepatocyte paraffin 1 antibody (HepPar1), Glypican-3 (GPC-3) [61] and cytokeratins, should be included if the histogenesis of the tumor is to be studied. Markers of cell proliferation, proliferating cell nuclear antigen (PCNA), antigen ki-67 (ki-67) and cellular tumor antigen p53 (p53) are not routinely used.

Alpha-fetoprotein (AFP) (Fig. 2) is fairly specific for HCC. Alpha-fetoprotein is an oncofetal protein produced by liver and visceral endodermal of the yolk sac [62]. AFP specification for HCC is ranged from 95% to 100% on FNABs. It is not useful as a tissue marker because of low sensitivity (25% to 50%). Serum AFP levels are helpful in diagnosis of HCC, but serum levels have to be greater than 400 ng/ml to be of diagnostic value.

Polyclonal carcinoembryonic antigen (pCEA) is a glycoprotein present in the glycocalyx of fetal epithelial cells and normal adult cells that cross-react with biliary glycoprotein present in bile canaliculi and biliary ductal epithelium. Polyclonal (pCEA) shows diffuse cytoplasmic expression-on FNAB- in a wide range of adenocarcinomas (more than 90% are positive). HCC shows a characteristic “chicken- wire fence” pattern [63]. pCEA does not help distinguish between malignant and benign hepatocellular nodules. The sensitivity is high for well- and moderately differentiated HCC (80%), but low in poorly differentiated HCC (25% to 50%).

Cluster of differentiation 10(CD10) is a cell membrane metallopeptidase that is expressed in haematopoietic malignancies, and in carcinomas of the liver and pancreas. It is expressed in normal and neoplastic liver exhibiting a similar pattern to pCEA [64, 65]. CD10 is very useful in distinguishing HCC from non-HCC malignancies. The sensitivity of CD10 (68.3%) is far better than immunostaining for AFP (26.11%) but less sensitive than pCEA (95.2%) in the diagnosis of HCC.
Cluster of differentiation34 (CD34) is an intercellular adhesion protein found in normal epithelium but absent in normal sinusoids. Diffuse sinusoidal CD34 reactivity is seen in HCC, even small WD-HCC [66].

HepPar1 (Hepatocyte paraffin 1 antibody) is a sensitive marker for hepatocytic differentiation and is part of the antibody panel for distinguishing HCC from CC and metastases. However, not all HCC stain uniformly and not all HepPar-1 positive tumors are of hepatocellular origin or arise in the liver [67]. Its variable and heterogeneous staining pattern, which can range from 100% positive cells in WD-HCC to <5% in some PD-HCC cases may lead to false negative results in small samples and FNABs.

Glypican-3 (GPC-3) an oncofetal protein plays a major role in promoting embryonic cell growth and differentiation [68]. Recently GPC-3 was reported to be one of the overexpressed genes in HCC by gene expression microarray analysis. Previous studies have shown that 6PC-3, a membrane-bound heparin sulfate proteoglycan, is immunoreacted by a large proportion of HCC, but not by normal hepatocytes, nonmalignant liver disease, or benign (adenoma) and preneoplastic lesions (dysplastic nodules) GPC-3 is shown to be more sensitive than AFP and more specific than HepPar-1.

Recently, GPC-3 was identified to be a useful tumor marker for the diagnosis of HCC, hepatoblastoma, melanoma, testicular germ cell tumors and Wilms tumor [69].

Cytokeratins (CK7, 8, 18, 19, 20, CAM5.2 and AE1/AE3).

Mature hepatocytes stain with CK8, CK18 and CAM5.2 but not with CK7, CK19 or CK20 or AE1/AE3. CAM5.2 is the most reliable cytokeratin antibody for HCC. AE1/AE3 negativity is expected in hepatocellular lesions. Focal CK7 and CK19 can be seen in high grade HCC. HCC is generally CK20 negative [70].

Expression of the CD15 antigen (Fig. 3), which is one of the adhesion molecules, was studied immunohistochemically to investigate the mechanism of intrahepatic metastasis in 56 hepatocellular carcinomas (HCC) by Torii A. et al. [71]. The authors speculate that there is a relationship between the expression of CD15 and intrahepatic metastasis in HCC.

In a more recent study by Dong-Ming Kuang et al., peritumoral neutrophils, visualized by CD15 immunostain in paraffin embedded tissue, link inflammatory response to disease progression by fostering angiogenesis in HCC [72].

CD15 also stains positive, neoplastic cells from Hepatoid adenocarcinoma (HA), a rare neoplasm, which has a striking morphologic similarity to hepatocarcinoma [73].

A study to compare the accuracy of α-fetoprotein (AFP), des-γ-carboxy prothrombin (DCP), squamous cell carcinoma antigen-immunoglobulin M complexes (SCCA-IgM Cs) in the early diagnosis and in the prognosis of HCC, was conducted by Bertino G. et al. and they concluded that none of the three biomarkers (AFP, DCP, SCCA-IgM Cs) is optimal. Despite the large number
of studies devoted to the immunohistochemistry of HCC, at the present time, the absolute positive and negative markers for HCC are still lacking, and even those characterized by very high sensitivity and specificity do not have a universal diagnostic usefulness [74].

The diagnostic utility of highly differentiated hepatocellular carcinoma (HCC; G1) remains difficult; cell bridges with cell atypia are pathognomonic for diagnosis. Ancillary techniques and immunocytochemical investigations will increase the sensitivity and specificity, particularly by using the cell block technique [75].

A novel approach to the diagnosis of HCC utilises the role of the micronucleus in liver fine needle aspiration cytology [76].

A well differentiated hepatocellular nodular lesion remains a diagnostic challenge in FNA [77].

In a study by Helen Koutselini et al. [78], authors have concluded that the three most important cytological criteria of nuclear malignancy (hyperchromasia, enlargement and anisonucleosis), when quantified by morphometry, may be helpful in the differential diagnosis between non-cancerous liver lesions and HCCs (even those of high differentiation), since all the morphometric data showed pronounced differences between malignant and benign groups. Morphometry may also be used as a complementary tool in the cytological grading of HCCs.

CONCLUSION

Fine needle aspiration biopsy (FNAB) is a technique with high sensitivity and specificity when applied in a multidisciplinary setting by experienced screeners, in the diagnosis of HCC. Guided FNAB is a high operator-dependent procedure as is the preparation and interpretation of the cytologic material. The lack of tissue can be overcome by using cutting aspiration needles that can provide material for direct smears and cell-block preparations.

In the era of rising costs in medical practice and higher patient/practitioner/institution expectations of efficiency and faster turn-around time, FNAB can obviate the need to wait for tissue processing if accurate cytologic diagnoses can be rendered. Another cost-saving advantage, especially for less developed countries, is that smears are cheap, convenient and easy to prepare as long as there is an experienced person to interpret them. The combination of direct smear/cell-block preparation cytology, use of a panel of special stains and immunostains and close clinicopathologic correlation increase the optimization of FNAB in the diagnosis of HCC.

The authors declare no conflict of interest.
FNAB in hepatocellular carcinoma

obținute în tehnicele chirurgicale și non-chirurgicale pentru tratamentul HCC, există încă controverse privind procedurile diagnostice ale acestei afecțiuni. Pentru a facilita standardizarea procedurilor diagnostic a fost realizat un consens al Asociației Europene pentru studiu bolilor hepatice (European Association for the study of Liver-EASL). Pentru nodulii hepatici cu diametrul mai mare de 2 cm diagnosticul poate fi realizat dacă cel puțin două proceduri imagistice (ecografie, tomografie computerizată, rezonanță magnetică nucleară sau arteriografia hepatică) demonstrează creșterea vascularizației. Alternativ, nivelurile crescute ale alfa-fetoproteinei alături de o evaluarea imagistică poate transă diagnosticul. Aspirația fină pe ac (FNAB) trebuie realizată dacă evaluarea imagistică este indeterminată sau dacă leziunile au diametrile între 1 și 2 cm. Obiectivul acestei lucrări a fost de a prezenta succint aspectele FNAB pentru diagnosticul HCC.

Correspondence to: Alexandra Kalogeraki, MD, PhD. University of Crete, Medical Faculty, PO Box 1393, Heraklion 71110, Crete, Greece Tel: +30 2810 394692, Fax: +30 2810 394694, E-mail: kalogerakimedi@yahoo.gr

REFERENCES

9 FNAB in hepatocellular carcinoma

Received April 23, 2015