Research Article

Naoual Kouki and Mohamed Ali Toumi*

On the range of \(n^{th} \) order derivations acting on commutative Banach positive squares \(\ell \)-algebras

DOI 10.1515/taa-2015-0010
Received January 13, 2014; accepted December 2, 2015

Abstract: In this paper we prove that the image of a \(n^{th} \) order derivation on real commutative Banach \(\ell \)-algebras with positive squares is contained in the set of nilpotent elements.

Keywords: \(f \)-algebra, almost \(f \)-algebra, Jacobson radical, \(n^{th} \) order derivation

MSC: 06F25, 13N15

1 Introduction

Let \(A \) be a commutative algebra. A linear mapping \(D : A \rightarrow A \) is called an \(n^{th} \) order derivation if \(D \) satisfies

\[
D(x_1x_2...x_{n+1}) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \leq i_1 < ... < i_k \leq n+1} x_{i_1}...x_{i_k} D(x_{\tilde{i_1}}...\tilde{x_{i_k}}...x_{n+1})
\]

for all \(x_1, x_2, ..., x_{n+1} \in A \) such that the symbol \(\tilde{x} \) indicates that \(x \) is omitted. The first order derivation is exactly the ordinary derivation. The notion of high order derivation was introduced, in 1967, by Osborn [11]. Nakai [10] and Ebanks [5,6] focus their attention on higher order derivations. They give fundamental results in order to identify \(n^{th} \) order derivations.

Many mathematicians are interested on the range inclusion problems for the first order derivations. Singer and Wermer [13] proved that the range of every bounded derivation on a commutative Banach algebra is contained in the (Jacobson) radical. Simultaneously, they conjectured that the continuity assumption is superfluous. Johnson [8] showed that in order to confirm the conjecture of Singer-Wermer it was sufficient to suppose \(A^2 = A \oplus \mathbb{C} \); a commutative radical Banach algebra \(A \) with identity 1 adjoined and \(D : A^2 \rightarrow A^2 \) a derivation and work to prove the conjecture in this case. It took more than 30 years before the Singer and Wermer conjecture was finally confirmed by Thomas [14].

In the framework of (real) lattice-ordered algebras, Colville, Davis and Keimel [4] and Henriksen [7] showed that if \(A \) is an Archimedean \(f \)-algebra, then a positive operator \(D : A \rightarrow A \) is a derivation if and only if \(D(A) \subset N(A) \) and \(A^2 \subset \ker D \). Boulabiar [3] studied the positive derivations on Archimedean almost \(f \)-algebras. More precisely, he showed that if \(D \) is a positive derivation on an Archimedean almost \(f \)-algebra \(A \), then \(D(A) \subset N(A) \) and \(A^3 \subset \ker D \). Later, M. A. Toumi et al [15] and Ben Amor [1] generalized these results for the order bounded derivations. In 2012, Toumi [16] extended this results for the continuous derivations. Recently, Kouki and Toumi [9] focus their attention on the problem of range inclusion of derivation on non-Banach algebra. In fact, they proved that the image of any derivation on an universally complete \(f \)-algebra is contained in the cloradical (the intersection of all closed maximal modular ideals). Moreover, they proved...
that any derivation on a Banach f-algebra maps into the set of nilpotent elements.

To the best of our knowledge no attention at all has been paid in the literature to the range of n^{th} order derivations problem. In this paper we focus our attention on n^{th} order derivations acting on commutative Banach positive squares ℓ-algebras. More precisely, we prove that every n^{th} order derivation on real Banach ℓ-algebras with positive squares maps into the set of nilpotent elements.

2 Preliminaries

An algebra A which is simultaneously a vector lattice such that the partial ordering and the multiplication on A are compatible, that is $a, b \in A^+$ implies $ab \in A$ is called a lattice-ordered algebra (briefly ℓ-algebra).

In an ℓ-algebra A we denote the collection of all nilpotent elements of A by $N(A)$. An ℓ-algebra A is said to be semiprime if $N(A) = \{0\}$. An ℓ-algebra A is called an f-algebra if A verifies the property that $a \wedge b = 0$ and $c \geq 0$ imply $ac \wedge b = ca \wedge b = 0$. An ℓ-algebra A is called an almost f-algebra whenever it follows from $a \wedge b = 0$ that $ab = ba = 0$. An ℓ-algebra A is called an d-algebra if A verifies the property that $a \wedge b = 0$ and $c \geq 0$ imply $ac \wedge bc = ca \wedge cb = 0$.

In the following lines, we recall some definitions on high order derivations. An n^{th} order derivation on a commutative algebra A is a linear mapping D from A into A such that

$$D(x_1x_2\ldots x_{n+1}) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1, \ldots, i_k \leq n+1} x_{i_1}\ldots x_{i_k}D(x_{i_1}\ldots x_{i_k}\ldots x_{n+1})$$

for all $x_1, x_2, \ldots, x_{n+1} \in A$. The first order derivation $D : A \to A$ is a linear mapping such that

$$D(ab) = D(a) b + a D(b) \text{ for all } a, b \in A.$$

$\text{Der}^n(A)$ denoted the set of all n^{th} order derivations on A. The set generated by the composites of m ($m \leq n$) derivations denoted $\text{der}^n(A)$. Namely, $\text{der}^n(A) \subset \text{Der}^n(A)$ and $\text{der}^1(A) = \text{Der}^1(A) = \text{Der}(A)$.

A complex vector lattice is the complexification $A_C = A \oplus iA$ of a real vector lattice A provided that each $z \in A_C$ has the absolute value $|z|$ defined by the formula

$$|z| = \sup_{0 \leq \theta \leq 2\pi} |x(cos \theta) + y(sin \theta)| \quad (z = x + iy \in A_C).$$

Define a complex Banach ℓ-algebra A_C to be the complexification of a real Banach ℓ-algebra A. The multiplication in A extends naturally to the multiplication in A_C by the formula

$$(x + iy)(x' + iy') = \left(xx' - yy' \right) + i \left(xy' + x'y \right).$$

An ideal I in A_C is defined as the complexification $J \oplus iJ$ of an ideal $J \subset A$. An operator $T : E_C \to F_C$ is uniquely representable as $T = T_1 + iT_2$ where T_1, T_2 are real operators from A to A. Let $D : A_C \to A_C$ be a linear mapping and $D = D_1 + iD_2$. Then D is a complex derivation if and only if D_1 and D_2 are real derivations on A. For details on complex lattice algebras we refer to [2].

3 The range of a derivation acting on real commutative Banach positive squares ℓ-algebras

Before proceeding with the main result, we need some prerequisites.

Let A be a lattice-ordered algebra. A ring ideal M is said to be modular if there exists u in A such that $x - ux \in M$ for each $x \in A$.

Lemma 1. Let A be a real commutative Banach ℓ-algebra, let A_C be its complexification and let $I = J \oplus iJ$ be an ideal in A_C. Then the following properties are equivalent:

1. $D(I) \subset I$ for any D in $\text{Der}^n(A_C)$.
2. $\text{Der}^n(A_C)$ is the set of all n^{th} order derivations acting on A_C.
3. $\text{Der}^n(A_C)$ is the set of all n^{th} order derivations acting on A_C.

Download Date | 2/12/18 2:43 PM
1. \(I \) is a maximal modular ideal in \(AC \).
2. \(J \) is a maximal modular ideal in \(A \).

Proof. (1) \(\Rightarrow \) (2) Let \(K \) be a modular ideal in \(A \) such that \(J \subset K \). Then \(J \oplus iJ \subset K \oplus iK \). Since \(J \oplus iJ \) is a maximal modular ideal in \(AC \), it follow that

\[
K \oplus iK = J \oplus iJ \text{ or } K \oplus iK = AC.
\]

Hence

\[
K = J \text{ or } K = A.
\]

It remains to show that \(J \) is modular. Since \(I \) is modular, there exists \(u = u_1 + iu_2 \in AC \) such that

\[
x - ux = (x - u_1 x) + iux_2 \in J \oplus iJ, \text{ for all } x \in A.
\]

Then

\[
x - u_1 x \in J, \text{ for all } x \in A.
\]

Therefore, \(J \) is modular.

(2) \(\Rightarrow \) (1) Let \(K \oplus iK \) be a modular ideal of \(AC \) such that \(J \oplus iJ \subset K \oplus iK \). Then \(J \subset K \). Since \(J \) is a maximal modular ideal in \(A \), it follow that

\[
K = J \text{ or } K = A.
\]

Hence

\[
K \oplus iK = J \oplus iJ \text{ or } K \oplus iK = AC.
\]

Then \(J \oplus iJ \) is a maximal ideal in \(AC \). We have to show finally that \(J \oplus iJ \) is modular. Since \(J \) is modular, there exists \(u \in A \) such that

\[
x - ux \in J, \text{ for all } x \in A.
\]

Let \(x = a + ib \in AC \), then

\[
x - ux = (a + ib) - u (a + ib)
\]

\[
= a - ua + i (b - ub)
\]

\[
\in J \oplus iJ = I.
\]

\(\square \)

Let \(A \) be a real commutative \(\ell \)-algebra and let \(AC \) be its complexification. \(M(A) \) (respectively \(M(AC) \)) denotes the set of all maximal modular ring ideals of \(A \) (respectively, the set of all maximal modular ring ideals of \(AC \)). The Jacobson radical of \(A \) and the Jacobson radicals of \(AC \), which are denoted respectively by \(rad(A) \) and \(rad(AC) \), are defined as,

\[
rad(A) = \bigcap_{M \in M(A)} M
\]

and

\[
rad(AC) = \bigcap_{M \in M(AC)} M.
\]

Proposition 1. Let \(A \) be a real commutative Banach \(\ell \)-algebra with positive squares and let \(AC \) be its complexification. Then

\[
rad(AC) = N(AC)
\]

\[
= \{ a \in AC : a^3 = 0 \}
\]

\[
= \{ a \in AC : abc = 0 \text{ for all } b, c \in AC \}.
\]
Proof. By using the previous lemma, it follows that
\[
\text{rad}(A_C) = \bigcap_{I \in M(A_C)} I \\
= \bigcap_{J \in M(A)} (J \oplus iJ) \\
= \left(\bigcap_{J \in M(A)} J \right) \oplus i \left(\bigcap_{J \in M(A)} J \right) \\
= \text{rad}(A) \oplus i\text{rad}(A)
\]

According to Render [12],
\[
\text{rad}(A) = \{ a \in A : a^3 = 0 \} \\
= \{ a \in A : abc = 0 \text{ for all } b, c \in A \} \\
= N(A).
\]

Hence
\[
\text{rad}(A_C) = \text{rad}(A) \oplus i\text{rad}(A) \\
= N(A) \oplus iN(A) \\
= N(A_C)
\]

Consequently
\[
\text{rad}(A_C) = N(A_C) \\
= \{ a \in A_C : abc = 0 \text{ for all } b, c \in A_C \}.
\]

Theorem 1. Let A be a real commutative Banach ℓ-algebra with positive squares and let D : A → A be a derivation. Then D(A) ⊂ N(A)

Proof. Let D : A → A be a derivation. Let \(\tilde{D} : A_C \rightarrow A_C \) defined by \(\tilde{D}(x + iy) = D(x) + iD(y) \). Then \(\tilde{D} \) is a complex derivation on \(A_C \). Thomas in [14] showed that the image of a complex derivation is contained in the radical. According to the previous proposition \(\text{rad}(A_C) = N(A_C) \). Then \(\tilde{D}(A_C) \subset N(A_C) \). Since
\[
\tilde{D}(A_C) = D(A) \oplus iD(A) \text{ and } N(A_C) = N(A) \oplus iN(A).
\]

Then
\[
D(A) \subset N(A).
\]

We deduce also the following corollaries.

Corollary 1. Let A be a real Banach almost f-algebra and let D : A → A be a derivation. Then
\[
D(A) \subset N(A) \text{ and } D\left(A^3\right) = \{0\}
\]

Proof. If \(a \in N(A) \), then it follows from
\[
0 = D(abc) \\
= abD(c) + acD(b) + bcD(a) \\
= bcD(a).
\]
that \(bcD(a) \) for all \(b, c \in A \). Therefore \(D(a) \in N(A) \).

Let \(\bar{D} : A_{/N(A)} \to A_{/N(A)} \) defined by \(\bar{D}(a + N(A)) = D(a) + N(A) \). Hence it not hard to prove that \(\bar{D} \) is a derivation and that \(A_{/N(A)} \) is a semiprime Banach \(f \)-algebra. Then \(D \) is null and so \(D(a) \subset N(A) \) for all \(a \in A \). Hence \(D(A) \subset N(A) \) and \(D(A^2) = \{0\} \).

If in addition the nilpotency index does not exceed 2, the situation improves considerably.

Corollary 2. Let \(A \) be a real Banach almost \(f \)-algebra such that \(N(A) = \{ a \in A ; a^2 = 0 \} \) and let \(D : A \to A \) be a linear mapping. Then \(D \) is a derivation if and only if

\[
D(A) \subset N(A) \text{ and } D\left(A^2\right) = \{0\}.
\]

Proof. If \(D \) is a derivation. Then, by the above theorem, \(D(x) \subset N(A) \) for all \(x \in A \). It follows that \(D(x)y = 0 \) for all \(x, y \in A \) and so \(D(A^2) = \{0\} \). It is not hard to prove that \(D(A) \subset N(A) \) and \(D(A^2) = \{0\} \) implies that \(D \) is a derivation.

Corollary 3. Let \(A \) be a real Banach \(f \)-algebra and let \(D : A \to A \) be a linear mapping. Then \(D \) is a derivation if and only if

\[
D(A) \subset N(A) \text{ and } D\left(A^2\right) = \{0\}.
\]

Corollary 4. Let \(A \) be a real Banach \(d \)-algebra and let \(D : A \to A \) be a derivation. Then \(D(A) \subset N(A) \).

4 The Singer-Wermer conjecture of \(n \)th order derivation acting on real commutative Banach positive squares \(\ell \)-algebras

Nakai [10] proved that if \(D_1 \) and \(D_2 \) are derivations of orders \(m, n \) respectively acting on a commutative algebra \(A \), then \(D_1 \circ D_2 \) is an \((m + n)^{th} \) order derivation. Then the product of two derivations is a second order derivation. If in addition \(A \) is an \(f \)-algebra, the situation improves considerably.

Proposition 2. Let \(A \) be a real Banach \(f \)-algebra and let \(D_1, D_2 : A \to A \) be two derivations. Then \(D_1 \circ D_2 \) is a derivation.

Proof. Let \(D_1, D_2 : A \to A \) be two derivations. It follows from [9, Theorem 8] that \(D_1(A) \subset N(A) \) and \(D_2(A) \subset N(A) \).

Therefore

\[
D_1 \circ D_2(ab) = D_1(aD_2(b) + D_2(a)b)
\]

\[
= aD_1D_2(b) + D_1(a)D_2(b) + D_2(a)D_1(b) + bD_1D_2(b)
\]

\[
= 0.
\]

and

\[
D_1 \circ D_2(A) \subset N(A).
\]

Then, \(D_1 \circ D_2 \) is a derivation.

According to the previous proposition, any second order derivation on a Banach \(f \)-algebra cannot be a product of two derivations. This is illustrated in the following example.

Example 1. Take \(A = \mathbb{R}^2 \) with the usual operations and order. We define the following multiplication:

\[
\begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} aa' \ b b' \\ 0 \end{pmatrix}
\]
for all \((\alpha, \beta)\), \((\beta, \gamma)\) \(\in A\). A simple verification shows that \(A\) is a Banach \(f\)-algebra under the multiplication.

Let \(D : A \to A\) be the linear map defined by \(D(\alpha, \beta) = (\beta, \gamma)\) for all \((\alpha, \beta)\) \(\in A\). It is easy to show that \(D\) is a second order derivation that is not derivation and so \(D\) cannot be a product of two derivations.

Proposition 3. Let \(A\) be a commutative algebra and let \(D : A \to A\) be an \(n^{th}\) order derivation. Let \(x_1, x_2, \ldots, x_{n-1} \in A\) and let \(D_{x_1, x_2, \ldots, x_{n-1}} : A \to A\) defined by

\[
D_{x_1, x_2, \ldots, x_{n-1}}(x_n) = D(x_1 x_2 \ldots x_{n-1}) - \frac{n-1}{2}\sum_{k=1}^{n-2} (-1)^{k+1} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} x_{i_1} \ldots x_{i_k} D(x_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

Then \(D_{x_1, x_2, \ldots, x_{n-1}}\) is a derivation.

Proof. Let \(a, b \in A\). Since

\[
D_{x_1, x_2, \ldots, x_{n-1}}(a) = D(ax_1 x_2 \ldots x_{n-1}) - aD(x_1 x_2 \ldots x_{n-1})
\]

\[
- \sum_{k=1}^{n-2} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} ax_{i_1} \ldots x_{i_k} D(x_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

\[
- \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} x_{i_1} \ldots x_{i_k} D(ax_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

Then

\[
D_{x_1, x_2, \ldots, x_{n-1}}(ab) = D(abx_1 x_2 \ldots x_{n-1}) - abD(x_1 x_2 \ldots x_{n-1})
\]

\[
- \sum_{k=1}^{n-2} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} abx_{i_1} \ldots x_{i_k} D(x_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

\[
- \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} x_{i_1} \ldots x_{i_k} D(abx_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

Since

\[
D(abx_1 x_2 \ldots x_n) = abD(x_1 x_2 \ldots x_{n-1})
\]

\[
+ \sum_{k=1}^{n-2} (-1)^{k+3} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} abx_{i_1} \ldots x_{i_k} D(x_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

\[
+ \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} x_{i_1} \ldots x_{i_k} D(abx_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

\[
+ aD(bx_1 \ldots x_{n-1})
\]

\[
+ \sum_{k=1}^{n-1} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} ax_{i_1} \ldots x_{i_k} D(bx_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]

\[
+ bD(ax_1 \ldots x_{n-1})
\]

\[
+ \sum_{k=1}^{n-1} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} bx_{i_1} \ldots x_{i_k} D(ax_1 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_k} \ldots x_{n-1})
\]
Then
\[
D_{x_1, x_2, \ldots, x_{n-1}}(ab) = aD(bx_1 \ldots x_{n-1}) + \sum_{k=1}^{n-1} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} ax_{i_1} \ldots x_{i_k} D(bx_{i_{k+1}} \ldots x_{n-1}) \\
+ bD(ax_1 \ldots x_{n-1}) + \sum_{k=1}^{n-1} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} bx_{i_1} \ldots x_{i_k} D(ax_{i_{k+1}} \ldots x_{n-1}) \\
- 2 \sum_{k=1}^{n-2} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} abx_{i_1} \ldots x_{i_k} D(x_{i_{k+1}} \ldots x_{n-1}) \\
= aD(bx_1 \ldots x_{n-1}) + \sum_{k=1}^{n-1} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} x_{i_1} \ldots x_{i_k} D(bx_{i_{k+1}} \ldots x_{n-1}) \\
- \sum_{k=1}^{n-2} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} bx_{i_1} \ldots x_{i_k} D(ax_{i_{k+1}} \ldots x_{n-1}) \\
+ bD(ax_1 \ldots x_{n-1}) + \sum_{k=1}^{n-1} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} x_{i_1} \ldots x_{i_k} D(ax_{i_{k+1}} \ldots x_{n-1}) \\
- \sum_{k=1}^{n-2} (-1)^{k+2} \sum_{1 \leq i_1 < \cdots < i_k \leq n-1} ax_{i_1} \ldots x_{i_k} D(x_{i_{k+1}} \ldots x_{n-1}) \\
= aD_{x_1, x_2, \ldots, x_{n-1}}(b) + D_{x_1, x_2, \ldots, x_{n-1}}(a) b
\]

\[\Box\]

Proposition 4. Any real \(n^{th}\) order derivation on a commutative semiprime Banach \(l\)-algebra with positive squares is null.

Proof. Let \(D : A \to A\) be a \(n^{th}\) order derivation. Let \(x_1, x_2, \ldots, x_{n-1} \in A\). The maps \(D_{x_1, x_2, \ldots, x_{n-1}} : A \to A\) defined by
\[
D_{x_1, x_2, \ldots, x_{n-1}}(x_n) = D(x_1 x_2 \ldots x_n) - \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \leq i_1 < \cdots < i_k \leq n} x_{i_1} \ldots x_{i_k} D(x_{i_{k+1}} \ldots x_{n})
\]
is a real derivation on a commutative Banach \(l\)-algebra with positive squares. Then \(D_{x_1, x_2, \ldots, x_{n-1}}(A) \subset N(A)\). Since \(N(A) = \{0\}\), then \(D_{x_1, x_2, \ldots, x_{n-1}}\) is null. It follows that \(D\) is a \((n-1)^{th}\) order derivation. By repeating this argument, we find that \(D\) is a first order derivation. Therefore \(D(A) \subset N(A)\). Since \(A\) is a semiprime, then \(D\) is null. \(\Box\)

Theorem 2. Let \(A\) be a real commutative Banach positive squares \(l\)-algebra and let \(D : A \to A\) be a derivation of order \(n\). Then
\[
D(A) \subset N(A) \text{ and } D \left(A^{n+2} \right) = \{ 0 \}.
\]

Proof. Let \(D : A \to A\) be a \(n^{th}\) order derivation. Let \(a \in N(A)\). Then \(abc = 0\) for all \(b, c \in A\). Let \(x_i \in A\), \(1 \leq i \leq n\). Hence
\[
0 = D \left(a \prod_{i=1}^{n} x_i^2 \right) \\
= aD \left(\prod_{i=1}^{n} x_i^2 \right) + (-1)^{n+1} \left(\prod_{i=1}^{n} x_i^2 \right) D(a).
\]
Proof. If \(N(A) = \{ a \in A : a^2 = 0 \} \), then for all \(x, y \in N(A) \) we deduce the following result.

\[
d (D(x)) \subseteq N(A) \quad \text{and} \quad D \left(A^{n+1} \right) = \{ 0 \}.
\]

Corollary 5. Let \(A \) be a real commutative Banach positive squares \(\ell \)-algebra such that \(N(A) = \{ a \in A : a^2 = 0 \} \) and let \(D : A \to A \) be a linear mapping. Then \(D \) is a \(n \)th order derivation if and only if

\[
D (A) \subseteq N (A) \quad \text{and} \quad D \left(A^{n+1} \right) = \{ 0 \}.
\]

Proof. If \(D \) is a \(n \)th order derivation. Then, by the above theorem, \(D(x) \subseteq N(A) \) for all \(x \in A \). It follows that \(D(xy) = 0 \) for all \(x, y \in A \) and so \(D \left(A^{n+1} \right) = \{ 0 \} \). It is not hard to prove that \(D(A) \subseteq N(A) \) and \(D \left(A^{n+1} \right) = \{ 0 \} \) implies \(D \) is a \(n \)th order derivation.

Corollary 6. Let \(A \) be a real Banach almost \(f \)-algebra and let \(D : A \to A \) be a \(n \)th order derivation. Then

\[
D (A) \subseteq N (A) \quad \text{and} \quad D \left(A^{n+2} \right) = \{ 0 \}.
\]

Since in an \(f \)-algebra, the nilpotency index does not exceed 2, we deduce the following result.

Corollary 7. Let \(A \) be a real Banach \(f \)-algebra and let \(D : A \to A \) be a linear mapping. Then \(D \) is a \(n \)th order derivation if and only if

\[
D (A) \subseteq N (A) \quad \text{and} \quad D \left(A^{n+1} \right) = \{ 0 \}.
\]

References