ON PERFECT CONES AND ABSOLUTE BAIRE-ONE RETRACTS

Olena Karlova

ABSTRACT. We introduce perfect cones over topological spaces and study their connection with absolute B_1-retracts.

1. Introduction

A subset E of a topological space X is a retract of X if there exists a continuous mapping $r: X \to E$ such that $r(x) = x$ for all $x \in E$. Different modifications of this notion in which r is allowed to be discontinuous (in particular, almost continuous or a Darboux function) were considered in [3], [10]–[12]. The author introduced in [5] the notion of B_1-retract, i.e., a subspace E of X for which there exists a Baire-one mapping $r: X \to E$ with $r(x) = x$ on E. Moreover, the following two results were obtained in [5].

Theorem 1.1. Let X be a normal space and E be an arcwise connected and locally arcwise connected metrizable F_{σ}- and G_δ-subspace of X. If

(i) E is separable, or
(ii) X is collectionwise normal,
then E is a B_1-retract of X.

Theorem 1.2. Let X be a completely metrizable space and let E be an arcwise connected and locally arcwise connected G_δ-subspace of X. Then, E is a B_1-retract of X.

Note that, in the above mentioned results, E is a locally arcwise connected space. Therefore, it is natural to ask

Question 1.3. Is any arcwise connected G_δ-subspace E of a completely metrizable space X a B_1-retract of this space?

© 2015 Mathematical Institute, Slovak Academy of Sciences.
2010 Mathematics Subject Classification: Primary 54C20, 54C15; Secondary 54C50. Keywords: cone over a space, B_1-retract, Baire-one mapping.
In this work we introduce the notions of the perfect cone over a topological space and an absolute B_1-retract (see definitions in Section 2). We show that the perfect cone over a σ-compact metrizable zero-dimensional space is an absolute B_1-retract. Moreover, we give a negative answer to Question 1.3.

2. Preliminaries

Throughout the paper, all topological spaces have no separation axioms if it is not specified.

A mapping $f : X \to Y$ is a Baire-one mapping if there exists a sequence of continuous mappings $f_n : X \to Y$ which converges to f pointwise on X.

A subset E of a topological space X is called:

- a B_1-retract of X if there exists a sequence of continuous mappings $r_n : X \to E$ such that $r_n(x) \to r(x)$ for all $x \in X$ and $r(x) = x$ for all $x \in E$; the mapping $r : X \to E$ is called a B_1-retraction of X onto E;
- a σ-retract of X if $E = \bigcup_{n=1}^{\infty} E_n$, where $(E_n)_{n=1}^{\infty}$ is an increasing sequence of retracts of X;
- ambiguous if it is simultaneously F_{σ} and G_δ in X.

A topological space X is:

- perfectly normal if it is normal and every closed subset of X is G_δ;
- an absolute B_1-retract (in the class C of topological spaces) if $X \in C$ and for any homeomorphism h, which maps X onto a G_δ-subset $h(X)$ of a space $Y \in C$, the set $h(X)$ is a B_1-retract of Y; in this paper we will consider only the case C is the class of all perfectly normal spaces;
- a space with the regular G_δ-diagonal if there exists a sequence $(G_n)_{n=1}^{\infty}$ of open neighbourhoods of the diagonal $\Delta = \{(x,x) : x \in X\}$ in X^2 such that $\Delta = \bigcap_{n=1}^{\infty} G_n = \bigcap_{n=1}^{\infty} \overline{G_n}$;
- contractible if there exists a continuous mapping $\gamma : X \times [0,1] \to X$ and $x^* \in X$ such that $\gamma(x,0) = x$ and $\gamma(x,1) = x^*$ for all $x \in X$; the mapping γ is called a contraction.

A family $(A_s : s \in S)$ of subsets of X is said to be a partition of X if $X = \bigcup_{s \in S} A_s$ and $A_s \cap A_t = \emptyset$ for all $s \neq t$.

If a space X is homeomorphic to a space Y, then we denote this fact by $X \simeq Y$.

For a mapping $f : X \times Y \to Z$ and a point $(x,y) \in X \times Y$, let $f^x(y) = f_y(x) = f(x,y)$.
3. Perfect cones and their properties

The cone \(\Delta(X) \) over a topological space \(X \) is the quotient space \((X \times [0,1]) / (X \times \{0\}) \) with the quotient mapping \(\lambda : X \times [0,1] \to \Delta(X) \). By \(v \) we denote the vertex of the cone, i.e., \(v = \lambda(X \times \{0\}) \). We call the set \(\lambda(X \times \{1\}) \) the base of the cone.

Let \(X_1 = (0,1) \) and \(X_2 = [0,1] \). Then, \(\Delta(X_2) \) is homeomorphic to a triangle \(T \subseteq [0,1]^2 \) while \(\Delta(X_1) \) is not even metrizable, since there is no countable base of neighbourhoods at the cone vertex. Consequently, the naturally embedding of \(\Delta(X_1) \) into \(\Delta(X_2) \) is not a homeomorphism. Therefore, on the cone \(\Delta(X) \) over a space \(X \), one more topology \(\mathcal{T}_p \) which coincides with the quotient topology \(\mathcal{T} \) on \(X \times (0,1] \) naturally appears and the base of neighbourhoods of the vertex \(v \) forms the system \(\{ \lambda(X \times [0,\varepsilon]) : \varepsilon > 0 \} \). The cone \(\Delta(X) \) equipped with the topology \(\mathcal{T}_p \) is said to be perfect and is denoted by \(\Delta_p(X) \).

For all \(x \in X \), we write
\[
v x = \lambda^x([0,1]).
\]

Obviously,
\[
\Delta(X) = \bigcup_{x \in X} v x.
\]

It is easily seen that \(v x \cap vy = \{v\} \) for all distinct \(x, y \in X \) and \(v x \simeq [0,1] \) for all \(x \in X \).

For every \(y \in \Delta(X) \setminus \{v\} \), we set
\[
\alpha(y) = \text{pr}_X(\lambda^{-1}(y)). \tag{3.1}
\]

Obviously, \(\alpha : \Delta(X) \setminus \{v\} \to X \) is continuous in both topologies \(\mathcal{T} \) and \(\mathcal{T}_p \).

Let
\[
\beta(y) = \begin{cases}
\text{pr}_{[0,1]}(\lambda^{-1}(y)), & y \neq v, \\
0, & y = v.
\end{cases} \tag{3.2}
\]

Then, \(\beta : \Delta_p(X) \to [0,1] \) is a continuous function. Indeed, it is evident that \(\beta \) is continuous on \(\Delta_p(X) \setminus \{v\} \). Since
\[
\beta^{-1}([0,\varepsilon]) = \lambda(X \times [0,\varepsilon]) \tag{3.3}
\]
for any \(\varepsilon > 0 \), the set \(\beta^{-1}([0,\varepsilon]) \) is a neighbourhood of \(v \). Consequently, \(\beta \) is continuous at \(v \).

We observe that
\[
\lambda(\alpha(y), \beta(y)) = y
\]
for all \(y \in \Delta(X) \setminus \{v\} \).
Remark 3.1.

1. The concept of the perfect cone over a separable metrizable space was also defined in [8, p. 55].
2. We observe that \(x \mapsto \lambda(x, 1) \) is a homeomorphism of \(X \) onto \(\lambda(X, \times \{1\}) \subseteq \Delta_p(X) \). Therefore, we can identify \(X \) with its image and consider \(X \) as a subspace of \(\Delta_p(X) \).
3. In the light of the previous observation, we may assume that the mapping \(\alpha \) defined by formula (3.1) is a retraction.
4. The system \(\{ \beta^{-1}((0, \varepsilon)) : \varepsilon > 0 \} \) is the base of neighbourhoods of the vertex of the cone according to (3.3).

Proposition 3.2 ([8, p. 55]). The cone \(\Delta(X) \) over a compact space \(X \) is perfect.

Proof. Let \(W \) be an open neighbourhood of \(v \) in \(\Delta(X) \). Then, for every \(x \in X \), there exist a neighbourhood \(U_x \) of \(x \) and \(\delta_x > 0 \) such that \(\lambda(U_x \times [0, \delta_x]) \subseteq W \). Choose a finite subcover \((U_1, \ldots, U_n) \) of \((U_x : x \in X) \) and put \(\varepsilon = \min\{\delta_1, \ldots, \delta_n\} \). Then, \(\lambda(X \times [0, \varepsilon]) \subseteq W \). Hence, \(\Delta(X) \) is the perfect cone. \(\square \)

Theorem 3.3. Let \(X \) be a topological space.

1. If \(X \) is Hausdorff, then \(\Delta_p(X) \) is Hausdorff.
2. If \(X \) is regular, then \(\Delta_p(X) \) is regular.
3. If \(X \) is a countable regular space, then \(\Delta_p(X) \) is perfectly normal.
4. \(\Delta_p(X) \) is contractible.
5. If \(X \) is locally (arcwise) connected, then:
 a) \(\Delta(X) \) is locally (arcwise) connected;
 b) \(\Delta_p(X) \) is locally (arcwise) connected.
6. If \(X \) is metrizable, then \(\Delta_p(X) \) is metrizable.

Proof.

1) Let \(x, y \in \Delta_p(X) \) and \(x \neq y \). Since \(\Delta_p(X) \setminus \{v\} \) is homeomorphic to the Hausdorff space \(X \times (0, 1] \), it is sufficient to consider the case \(x = v \) or \(y = v \). Assume that \(x = v \) and \(y \neq v \). Then, \(0 = \beta(x) < \beta(y) \leq 1 \), where \(\beta \) is defined by formula (3.2). Set \(O_x = \lambda(X \times [0, \beta(y)/2]) \) and \(O_y = \lambda(X \times (\beta(y)/2, 1]) \). Then, \(O_x \) and \(O_y \) are disjoint neighbourhoods of \(x \) and \(y \) in \(\Delta_p(X) \), respectively.

2) Fix \(y \in Y \) and a closed set \(F \subseteq \Delta_p(X) \) such that \(y \notin F \). Since \(X \times (0, 1] \) is regular, the case \(y \neq v \) and \(v \notin F \) is obvious.

Let \(y = v \). Choose \(\varepsilon > 0 \) such that \(F \cap \lambda(X \times [0, \varepsilon)) = \emptyset \). Then, \(U = \lambda(X \times [0, \varepsilon/2]) \) and \(V = \lambda(X \times (\varepsilon/2, 1]) \) are disjoint open neighbourhoods of \(v \) and \(F \) in \(\Delta_p(X) \), respectively.
Now, let \(y \neq v \) and \(v \in F \). We take \(\varepsilon > 0 \) such that \(O_v = \beta^{-1}([0, \varepsilon)) \) is an open neighbourhood of \(v \) with \(y \notin O_v \). Moreover, since \(\Delta_p(X) \setminus \{v\} \) is regular, there exists an open neighbourhood \(O_y \) of \(y \) in \(\Delta_p(X) \) with \(\overline{O_y} \cap G \subseteq \Delta_p \setminus F \). Then, \(U = O_y \setminus O_v \) is an open neighbourhood of \(y \) in \(\Delta_p(X) \) such that \(U \cap F = \emptyset \).

3) We observe that \(\Delta_p(X) \) is regular by the previous proposition. Moreover, \(Y \) is hereditarily Lindelöf (and, consequently, normal) as the union of countably many homeomorphic copies of \([0, 1]\). Hence, \(\Delta_p(X) \) is perfectly normal.

4) For all \(y \in \Delta_p(X) \) and \(t \in [0, 1] \) define
\[
\gamma(y, t) = \begin{cases} \lambda(\alpha(y), t \cdot \beta(y)), & y \neq v, \\ v, & y = v, \end{cases}
\]
where \(\alpha \) and \(\beta \) are defined by (3.1) and (3.2), respectively. Then, \(\gamma(y, 0) = v \) and \(\gamma(y, 1) = y \) for all \(y \in Y \). Clearly, \(\gamma \) is continuous on \((Y \setminus \{v\}) \times [0, 1] \). Let \(\varepsilon > 0 \) and \(W = \lambda(X \times [0, \varepsilon)) = \beta^{-1}([0, \varepsilon)) \). Since \(\beta(\gamma(y, t)) = t \cdot \beta(y), \gamma(W \times [0, 1]) \subseteq W \). Hence, \(\gamma \) is continuous at each point of the set \(\{v\} \times [0, 1] = \beta^{-1}(0) \).

5a) Notice that the space \(\Delta(X) \setminus \{v\} \) is locally (arcwise) connected, since it is homeomorphic to the locally (arcwise) connected space \(X \times [0, 1] \). Let us check that \(\Delta(X) \) is locally (arcwise) connected at \(v \). Fix an open neighbourhood \(W \) of \(v \) in \(\Delta(X) \). Then, \(V = \lambda^{-1}(W) \) is open in \(X \times [0, 1] \) and \(X \times \{0\} \subseteq V \). For every \(x \in X \), we denote by \(G_x \) the (arcwise) component of \(V \) with \((x, 0) \in G_x \). Then, \(G_x \) is open in \(\Delta(X) \) and, consequently, in \(\Delta(X) \). Let \(G = \bigcup_{x \in X} G_x \). Then, the set \(\lambda(G) \) is an open neighbourhood of \(v \) such that \(\lambda(G) \subseteq W \). It remains to observe that \(\lambda(G) \) is (arcwise) connected, since \(v \in \lambda(G_x) \) and \(\lambda(G_x) \) is (arcwise) connected for all \(x \in X \).

5b) Let \(\varepsilon > 0 \) and \(W = \beta^{-1}([0, \varepsilon)) \). Since each element of \(W \) can be joined by a segment with \(v \), \(W \) is an arcwise connected neighbourhood of \(v \).

6) Let \(\varrho \) be a metric generating the topology of \(X \) with \(\varrho \leq 1 \). For all \(x, y \in X \) and \(s, t \in [0, 1] \) we set
\[
d(\lambda(x, s), \lambda(y, t)) = |t - s| + \min\{s, t\} \varrho(x, y).
\]
Then, \(d \) is a correctly defined, symmetric, nonnegative and nondegenerate mapping of \(\Delta_p(X) \times \Delta_p(X) \). Moreover, the triangle inequality is satisfied, i.e.,
\[
d(\lambda(x, s), \lambda(z, u)) \leq d(\lambda(x, s), \lambda(y, t)) + d(\lambda(y, t), \lambda(z, u))
\]
for all \((x, s), (y, t), (z, u) \in X \times [0, 1]\). If \(t \geq \min\{s, u\} \), the inequality is obvious. Let \(t < \min\{s, u\} \). Without loss of generality, we may assume that \(t < u \leq s \).

Then, the above inequality is equivalent to
\[
s - u + u \varrho(x, z) \leq s - t + t \varrho(x, y) + u - t + t \varrho(y, z),
\]
i.e.,
\[
\varrho(x, z) \leq 2 \left(1 - \frac{t}{u}\right) + \frac{t}{u}\left(\varrho(x, y) + \varrho(y, z)\right),
\]
where
which does hold since \(p(x, z) \leq 2 \) and \(p(x, z) \leq p(x, y) + p(y, z) \). Moreover, \(d \) generates the topology of the perfect cone. It is obvious that the \(d \)-neighbourhoods of \(v \) are the correct ones and the metric \(d \) on \(\lambda(X \times (0, 1]) \) is equivalent to the summing metric inherited from \(X \times (0, 1] \). □

A subset \(E \) of a topological vector space \(X \) is bounded if for any neighbourhood of zero \(U \) there is such \(\gamma > 0 \) that \(E \subseteq \delta U \) for all \(|\delta| \geq \gamma \).

Proposition 3.4. Let \(Z \) be a topological vector space and \(X \subseteq Z \) be a bounded set. Then \(\Delta_p(X) \) is embedded to \(Z \times \mathbb{R} \).

Proof. Consider the set \(C = \{(xt, t) : x \in X, t \in [0, 1]\} \). Let \(\varphi(x, t) = (xt, t) \) for all \((x, t) \in X \times [0, 1] \) and \(v^* = (0, 0) \in X \times [0, 1] \). Then, the restriction \(\varphi|_{X \times \{0, 1\}} \) is a homeomorphism onto \(C \setminus \{v^*\} \). Moreover, the mapping \(\beta : C \to [0, 1], \beta(z, t) = t \), is continuous. Therefore, \(\beta^{-1}\left([0, \varepsilon]\right) \) is an open neighbourhood of \(v^* \) in \(C \) for any \(\varepsilon > 0 \). Now, we show that the system \(\{\beta^{-1}(\{0, \varepsilon\}) : \varepsilon > 0\} \) is a base of \(v^* \). Take an open neighbourhood of zero in \(Z \), \(\delta > 0 \) and let \(W = U \times (-\delta, \delta) \). Choose \(\varepsilon \in (0, \delta) \) such that \(tX \subseteq U \) for all \(t \) with \(|t| < \varepsilon \). Then, for each \(y = (z, t) \in \beta^{-1}\left([0, \varepsilon]\right) \) we have \(|t| < \delta \) and \(z \in tx \subseteq U \). Consequently, \(\beta^{-1}\left([0, \varepsilon]\right) \subseteq W \). Hence, \(C \) is homeomorphic to the perfect cone \(\Delta_p(X) \). □

The following result easily follows from [8, Theorem 1.5.9].

Corollary 3.5. The cone \(\Delta_p(X) \) over a finite Hausdorff space \(X \) is an absolute retract.

4. Weak \(B_1 \)-retracts

A subset \(E \) of a topological space \(X \) is called a weak \(B_1 \)-retract of \(X \) if there exists a sequence of continuous mappings \(r_n : X \to E \) such that \(\lim_{n \to \infty} r_n(x) = x \) for all \(x \in E \). Clearly, every \(B_1 \)-retract is a weak \(B_1 \)-retract. The converse proposition is not true (see Example [77]).

A space \(X \) is called an absolute weak \(B_1 \)-retract if, for any space \(Y \) and for any homeomorphic embedding \(h : X \to Y \), the set \(h(X) \) is a weak \(B_1 \)-retract of \(Y \).

Let \(E = \bigcup_{n=1}^{\infty} E_n \) and let \((r_n)_{n=1}^{\infty} \) be a sequence of retractions \(r_n : X \to E_n \). If the sequence \((E_n)_{n=1}^{\infty} \) is increasing, then \(\lim_{n \to \infty} r_n(x) = x \) for every \(x \in E \). Thus, we have proved the following fact.

Proposition 4.1. Every \(\sigma \)-retract of a topological space \(X \) is a weak \(B_1 \)-retract of \(X \).

Proposition 4.2. Let \(X \) be a countable Hausdorff space. Then, \(\Delta_p(X) \) is an absolute weak \(B_1 \)-retract.
ON PERFECT CONES AND ABSOLUTE BAIRE-ONE RETRACTS

Proof. Assume that $\Delta_p(X)$ is a subspace of a topological space Z. Let $X = \{x_n : n \in \mathbb{N}\}$ and $X_n = \{x_1, \ldots, x_n\}$. Then, $\Delta_p(X) = \bigcup_{n=1}^{\infty} \Delta_p(X_n)$ and every $\Delta_p(X_n)$ is a retract of Z by Corollary 3.5. Then, $\Delta_p(X)$ is a weak B_1-retract of Z by Proposition 1.1.

It was proved in [5] that a B_1-retract of a connected space is connected. It turns out that this is still valid for weak B_1-retracts.

Theorem 4.3. Let X be a connected space. Then, any weak B_1-retract E of X is connected.

Proof. Let $(r_n)_{n=1}^{\infty}$ be a sequence of continuous mappings $r_n : X \to E$ such that $\lim_{n \to \infty} r_n(x) = x$ for all $x \in E$. Denote $H = \bigcup_{n=1}^{\infty} r_n(X)$. We show that H is connected. Conversely, suppose that $H = H_1 \cup H_2$, where H_1 and H_2 are disjoint sets which are closed in H. Observe that each set $B_n = r_n(X)$ is connected. Then, $B_n \subseteq H_1$ or $B_n \subseteq H_2$. Choose an arbitrary $x \in H_1$. Then, there exists a number n_1 such that $r_n(x) \in H_1$ for all $n \geq n_1$. Hence, $B_n \subseteq H_1$ for all $n \geq n_1$. Similarly, there exists a number n_2 such that $B_n \subseteq H_2$ for all $n \geq n_2$. Therefore, $B_n \subseteq H_1 \cap H_2$ for all $n \geq \max\{n_1, n_2\}$, which is impossible.

It is easy to see that $H \subseteq E \subseteq \overline{H}$. Since H and \overline{H} are connected, E is connected, too.

Lemma 4.4. Let X be a normal space, Y be a contractible space, $(F_i)_{i=1}^{n}$ be a sequence of disjoint closed subsets of X and let $g_i : X \to Y$ be a continuous mapping for every $1 \leq i \leq n$. Then, there exists a continuous mapping $g : X \to Y$ such that $g(x) = g_i(x)$ on F_i for every $1 \leq i \leq n$.

Proof. Let $y^* \in Y$ and $\gamma : Y \times [0,1] \to Y$ be a continuous mapping such that $\gamma(y, 0) = y$ and $\gamma(y, 1) = y^*$ for all $y \in Y$. For all $x, y \in X$ and $t \in [0,1]$, define

$$h(x, y, t) = \begin{cases}
\gamma(x, 2t), & 0 \leq t \leq 1/2, \\
\gamma(y, -2t + 2), & 1/2 < t \leq 1.
\end{cases}$$

Then, the mapping $h : Y \times Y \times [0,1] \to Y$ is continuous, $h(x, y, 0) = x$ and $h(x, y, 1) = y$.

Let $n = 2$. By Urysohn’s lemma, there is a continuous function $\varphi : X \to [0,1]$ such that $\varphi(x) = 0$ on F_1 and $\varphi(x) = 1$ on F_2. For all $x \in X$, let

$$g(x) = h(g_1(x), g_2(x), \varphi(x)).$$

Clearly, $g : X \to Y$ is continuous and $g(x) = g_1(x)$ if $x \in F_1$, and $g(x) = g_2(x)$ if $x \in F_2$.

95
Assume the assertion of the lemma is true for \(k \) sets, where \(k = 1, \ldots, n - 1 \), and prove it for \(n \) sets. According to our assumption, there exists a continuous mapping \(\tilde{g}: X \rightarrow Y \) such that \(\tilde{g}|_{F_i} = g_i \) for every \(i = 1, \ldots, n - 1 \). Since the sets \(F = \bigcup_{i=1}^{n-1} F_i \) and \(F_n \) are closed and disjoint, there exists a continuous mapping \(g: X \rightarrow Y \) such that \(g|_{F} = \tilde{g} \) and \(g|_{F_n} = g_n \). Then, \(g|_{F_i} = g_i \) for every \(1 \leq i \leq n \).

Theorem 4.5. Let \(E \) be a contractible ambiguous weak \(B_1 \)-retract of a normal space \(X \). Then, \(E \) is a \(B_1 \)-retract of \(X \).

Proof. Let \((r_n)_{n=1}^{\infty} \) be a sequence of continuous mappings \(r_n: X \rightarrow E \) such that \(\lim_{n \rightarrow \infty} r_n(x) = x \) for all \(x \in E \). Choose increasing sequences \((E_n)_{n=1}^{\infty} \) and \((F_n)_{n=1}^{\infty} \) of closed subsets of \(X \) such that \(E = \bigcup_{n=1}^{\infty} E_n \) and \(X \setminus E = \bigcup_{n=1}^{\infty} F_n \). Fix \(x^* \in E \). Then, for every \(n \in \mathbb{N} \), by Lemma 4.4 there exists a continuous mapping \(f_n: X \rightarrow E \) such that \(f_n(x) = r_n(x) \) if \(x \in E_n \), and \(f_n(x) = x^* \) if \(x \in F_n \). It is easy to verify that the sequence \((f_n)_{n=1}^{\infty} \) is pointwise convergent on \(X \) and \(\lim_{n \rightarrow \infty} f_n(X) \subseteq E \). Let \(r(x) = \lim_{n \rightarrow \infty} f_n(x) \) for all \(x \in X \). Then, \(r(x) = \lim_{n \rightarrow \infty} r_n(x) = x \) for all \(x \in E \).

Proposition 4.6. The perfect cone \(\Delta_p(X) \) over a countable regular space \(X \) is an absolute \(B_1 \)-retract.

Proof. We first note that \(\Delta_p(X) \) is perfectly normal by Theorem 3.3. Assume that \(\Delta_p(X) \) is a \(G_\delta \)-subset of a perfectly normal space \(Z \). Then, \(\Delta_p(X) \) is a weak \(B_1 \)-retract of \(Z \) by Proposition 4.2. Moreover, \(\Delta_p(X) \) is a contractible \(F_\sigma \)-subspace of \(Z \). Hence, Theorem 4.3 implies that \(\Delta_p(X) \) is a \(B_1 \)-retract of \(Z \).

Let us observe that any \(B_1 \)-retract of a space with a regular \(G_\delta \)-diagonal is a \(G_\delta \)-subset of this space [5 Proposition 2.2]. But it is not valid for weak \(B_1 \)-retracts as the following example shows.

Example 4.7. Let \(\mathbb{Q} \) be a set of all rational numbers and \(X = \mathbb{Q} \cap [0, 1] \). Then, \(\Delta_p(X) \) is a weak \(B_1 \)-retract of \(\mathbb{R}^2 \) but not a \(B_1 \)-retract of \(\mathbb{R}^2 \).

Proof. Indeed, \(\Delta_p(X) \) is a weak \(B_1 \)-retract of \(\mathbb{R}^2 \) by Proposition 4.2. Since \(\Delta_p(X) \) is not a \(G_\delta \)-set in \(\mathbb{R}^2 \), \(\Delta_p(X) \) is not a \(B_1 \)-retract.

Theorem 4.8. Let \(X \) be a perfectly normal space, \(E \) be a contractible \(G_\delta \)-subspace of \(X \), \(x^* \in E \) and let \((E_n: n \in \mathbb{N}) \) be a cover of \(E \) such that

1. \(E_n \cap E_m = \{x^*\} \) for all \(n \neq m \);
2. \(E_n \) is a relatively ambiguous set in \(E \) for every \(n \);
3. \(E_n \) is a (weak) \(B_1 \)-retract of \(X \) for every \(n \).

Then \(E \) is a (weak) \(B_1 \)-retract of \(X \).
ON PERFECT CONES AND ABSOLUTE BAIRE-ONE RETRACTS

Proof. From [6, p. 359], it follows that for every \(n \) there exists an ambiguous set \(C_n \) in \(X \) such that \(C_n \cap E = E_n \setminus \{ x^* \} \). Moreover, there exists a sequence \((F_n)_{n=1}^\infty \) of closed subsets of \(X \) such that \(X \setminus E = \bigcup_{n=1}^\infty F_n \). Let \(D_n = C_n \cup F_n \), \(n \geq 1 \). Now, define \(X_1 = D_1 \) and \(X_n = D_n \setminus (\bigcup_{k<n} D_k) \) if \(n \geq 2 \). Then, \((X_n : n \in \mathbb{N}) \) is a partition of \(X \setminus \{ x^* \} \) by ambiguous sets \(X_n \) and \(X_n \cap E = E_n \setminus \{ x^* \} \) for every \(n \geq 1 \).

Suppose that \(E_n \) is a weak \(B_1 \)-retract of \(X \) for every \(n \). Choose a sequence \((r_{n,m})_{m=1}^\infty \) of continuous mappings \(r_{n,m} : X \to E_n \) such that \(\lim_{m \to \infty} r_{n,m}(x) = x \) for all \(x \in E_n \). Since \(X_n \) is \(F_\alpha \) in \(X \), for every \(n \), there is an increasing sequence \((B_{n,m})_{m=1}^\infty \) of closed subsets \(B_{n,m} \) of \(X \) such that \(X_n = \bigcup_{m=1}^\infty B_{n,m} \). Let \(A_{n,m} = \emptyset \) if \(n > m \), and \(A_{n,m} = B_{n,m} \) if \(n \leq m \). Then, Lemma 4.4 implies that for every \(m \in \mathbb{N} \) there is a continuous mapping \(r_m : X \to E \) such that \(r_m|_{A_{n,m}} = r_{n,m} \) and \(r_m(x^*) = x^* \).

We will show that \(\lim_{m \to \infty} r_m(x) = x \) on \(E \). Fix \(x \in E \). If \(x = x^* \), then \(r_m(x) = x \) for all \(m \). If \(x \neq x^* \), then there is a unique \(n \) such that \(x \in E_n \). Since \((A_{n,m})_{m=1}^\infty \) increases, there exists a number \(m_0 \) such that \(x \in A_{n,m} \) for all \(m \geq m_0 \). Hence, \(\lim_{m \to \infty} r_m(x) = \lim_{m \to \infty} r_{n,m}(x) = x \). Therefore, \(E \) is a weak \(B_1 \)-retract of \(X \).

If \(E_n \) is a \(B_1 \)-retract of \(X \) for every \(n \), we apply similar arguments. \(\square \)

5. Cones over ambiguous sets

Theorem 5.1. Let \(\Delta_p(X) \) be the perfect cone over a metrizable locally arcwise connected space \(X \), \(Z \) be a normal space, and let \(h : \Delta_p(X) \to Z \) be an embedding such that \(h(\Delta_p(X)) \) is an ambiguous set in \(Z \). If

a) \(X \) is separable, or
b) \(\Delta_p(X) \) is collectionwise normal,

then \(h(\Delta_p(X)) \) is a \(B_1 \)-retract of \(Z \).

Proof. We notice that \(h(\Delta_p(X)) \) is metrizable, arcwise connected and locally arcwise connected according to Theorem 3.3. Then, the set \(h(\Delta_p(X)) \) is a \(B_1 \)-retract of \(Z \) by Theorem 1.1. \(\square \)

By \(B_{c}(x_0) \), we denote an open ball in a metric space \(X \) with center at \(x_0 \in X \) and with radius \(\varepsilon \).

Theorem 5.2. Let \(\Delta_p(X) \) be the perfect cone over a zero-dimensional metrizable separable space \(X \), \(Z \) be a normal space and let \(h : \Delta_p(X) \to Z \) be such a homeomorphic embedding that \(h(\Delta_p(X)) \) is a closed set in \(Z \). Then \(h(\Delta_p(X)) \) is a weak \(B_1 \)-retract of \(Z \).
Proof. Without loss of generality, we may assume that $\Delta_p(X)$ is a closed subspace of a normal space Z. Consider a metric d on X which generates its topological structure and (X,d) is a completely bounded space. For every $n \in \mathbb{N}$, there exists a finite set $A_n \subseteq X$ such that the family $B_n = (B_n(a) : a \in A_n)$ is a cover of X. Since X is strongly zero-dimensional [2 Theorem 6.2.7], for every n there exists a finite cover $U_n = (U_{i,n} : i \in I_n)$ of X by disjoint clopen sets $U_{i,n}$ which refines B_n. Take an arbitrary $x_{i,n} \in U_{i,n}$ for every $n \in \mathbb{N}$ and $i \in I_n$. For all $x \in X$ and $n \in \mathbb{N}$, define

$$f_n(x) = x_{i,n},$$

if $x \in U_{i,n}$ for some $i \in I_n$. Then, every mapping $f_n : X \to X$ is continuous and $\lim_{n \to \infty} f_n(x) = x$ for all $x \in X$.

Fix $n \in \mathbb{N}$. For all $y \in \Delta_p(X)$, we set

$$g_n(y) = \begin{cases} \lambda(f_n(\alpha(y)), \beta(y)) & \text{if } y \neq v, \\
\ v & \text{if } y = v. \end{cases}$$

We prove that $g_n : \Delta_p(X) \to \Delta_p(X)$ is continuous at $y = v$. Indeed, let $(y_m)_{m=1}^\infty$ be a sequence of points $y_m \in Y$ such that $y_m \to v$. Assume that $y_m \neq v$ for all m. Show that $g_n(y_m) \to v$. Fix $\varepsilon > 0$. Since $\beta(y_m) \to 0$, there is a number m_0 such that $\beta(y_m) < \varepsilon$ for all $m \geq m_0$. Then, $g_n(y_m) = \lambda(f_n(\alpha(y_m)), \beta(y_m)) \in \lambda(X \times [0,\varepsilon))$ for all $m \geq m_0$. Hence, g_n is continuous at v.

Note that $g_n(\Delta_p(X)) \subseteq K_n$, where $K_n = \bigcup_{i \in I_n} vx_{i,n}$. Since K_n is a compact absolute retract by Corollary 3.1, K_n is an absolute extensor. Taking into account that $\Delta_p(X)$ is closed in Z, we get that there exists a continuous extension $r_n : Z \to K_n$ of g_n.

It remains to show that $\lim_{n \to \infty} r_n(y) = y$ for all $y \in \Delta_p(X)$. Fix $y \in \Delta_p(X)$. If $y = v$, then $r_n(y) = g_n(y) = v$ for all $n \geq 1$. Let $y \neq v$. Since $\lim_{n \to \infty} f_n(\alpha(y)) = \alpha(y)$ and λ is continuous,

$$\lim_{n \to \infty} r_n(y) = \lim_{n \to \infty} \lambda(f_n(\alpha(y)), \beta(y)) = \lambda(\alpha(y), \beta(y)) = y.$$

Hence, $\Delta_p(X)$ is a weak B_1-retract of Z.

Theorem 5.3. The perfect cone $\Delta_p(X)$ over a σ-compact zero-dimensional metrizable space X is an absolute B_1-retract.

Proof. Assume that $\Delta_p(X)$ is a $G_δ$-subspace of a perfectly normal space Z. Since X is σ-compact, there exists an increasing sequence $(F_n)_{n=1}^{\infty}$ of compact subsets of Z such that $X = \bigcup_{n=1}^{\infty} F_n$. Since for every $n \in \mathbb{N}$ the set $F_{n+1} \setminus F_n$ is open in the zero-dimensional metrizable separable space F_{n+1}, there exists a partition $(B_{n,m} : m \in \mathbb{N})$ of $F_{n+1} \setminus F_n$ by relatively clopen sets $B_{n,m}$ in F_{n+1}. Let $\mathbb{N}^2 = \{(n_k, m_k : k \in \mathbb{N}), H_0 = F_1$ and let $H_k = B_{n_k,m_k}$ for every $k \in \mathbb{N}$. Then, the family $(H_k : k = 0, 1, \ldots)$ is a partition of X by compact sets H_k.
ON PERFECT CONES AND ABSOLUTE BAIRE-ONE RETRACTS

Fix \(k \in \mathbb{N} \). Let \(E_k = \Delta_p (H_k) \) be the perfect cone over zero-dimensional metrizable separable space \(H_k \). Then, \(E_k \) is a closed subset of \(Z \). Therefore, \(E_k \) is a weak \(B_1 \)-retract of \(Z \) by Theorem 5.2.

Since \(\Delta_p (X) = \bigcup_{k=1}^{\infty} E_k \), Theorem 4.8 implies that \(\Delta_p (X) \) is a weak \(B_1 \)-retract of \(Z \). It remains to apply Theorem 4.5. □

The perfect cone \(\Delta_p (X) \) over a \(\sigma \)-compact space \(X \subseteq \mathbb{R} \) is an absolute \(B_1 \)-retract.

Proof. Suppose that \(\Delta_p (X) \) is a \(G_\delta \)-subspace of a perfectly normal space \(Z \).

Since \(\Delta_p (X) \) is \(\sigma \)-compact, \(\Delta_p (X) \) is \(F_\sigma \) in \(Z \).

Let \(G = \text{int}_Z X \), \(F = X \setminus G \), \(A = \Delta_p (G) \) and \(B = \Delta_p (F) \). Since \(G \) and \(F \) are \(\sigma \)-compact sets, \(A \) and \(B \) are \(\sigma \)-compact sets, too. Hence, \(A \) and \(B \) are ambiguous subsets of \(\Delta_p (X) \). Consequently, \(A \) and \(B \) are ambiguous in \(Z \). Since \(G \) is metrizable locally arcwise connected separable space, \(A \) is a \(B_1 \)-retract of \(Z \) by Theorem 5.1. Since \(F \) is zero-dimensional metrizable \(\sigma \)-compact space, \(B \) is a \(B_1 \)-retract of \(Z \) according to Theorem 5.3. Theorem 4.8 implies that the set \(\Delta_p (X) = A \cup B \) is a \(B_1 \)-retract of \(Z \). □

Note that the condition of \(\sigma \)-compactness of \(X \) in Theorems 5.2 and 5.3 is essential (see Example 6.4).

6. The weak local connectedness point set of \(B_1 \)-retracts

Let \((Y,d) \) be a metric space. A sequence \((f_n)_{n=1}^{\infty}\) of mappings \(f_n : X \to Y \) is uniformly convergent to a mapping \(f \) at a point \(x_0 \) of \(X \) if for any \(\varepsilon > 0 \) there exists a neighbourhood \(U \) of \(x_0 \) and \(N \in \mathbb{N} \) such that

\[
d(f_n(x), f(x)) < \varepsilon
\]

for all \(x \in U \) and \(n \geq N \). We observe that if every \(f_n \) is continuous at \(x_0 \) and the sequence \((f_n)_{n=1}^{\infty}\) converges uniformly to \(f \) at \(x_0 \), then \(f \) is continuous at \(x_0 \).

By \(R((f_n)_{n=1}^{\infty}, f, X) \) we denote the set of all points of uniform convergence of the sequence \((f_n)_{n=1}^{\infty}\) to the mapping \(f \).

The closure of a set \(A \) in a subspace \(E \) of a topological space \(X \) is denoted by \(A^E \).

A space \(X \) is weakly locally connected at \(x_0 \in X \) if every open neighbourhood of \(x_0 \) contains a connected (not necessarily open) neighbourhood of \(x_0 \). The set of all points of weak local connectedness of \(X \) will be denoted by \(WLC(X) \).
Theorem 6.1. Let X be a locally connected space, (E,d) be a metric subspace of X and let $r: X \to E$ be a B_1-retraction which is a pointwise limit of a sequence of continuous mappings $r_n: X \to E$. Then,

$$R((r_n)_{n=1}^\infty, r, X) \cap E \subseteq WLC(E).$$

Proof. Fix $x_0 \in R((r_n)_{n=1}^\infty, r, X) \cap E$ and $\varepsilon > 0$. Set $W = B_\varepsilon(x_0)$. Choose a neighbourhood U_1 of x_0 in X and a number n_0 such that

$$d(r_n(x), r(x)) < \frac{\varepsilon}{4}$$

for all $x \in U_1$ and $n \geq n_0$. Since r is continuous at x_0, there exists a neighbourhood $U_2 \subseteq X$ of x_0 such that

$$d(r(x), r(x_0)) < \frac{\varepsilon}{4}$$

for all $x \in U_2$. The locally connectedness of X implies that there is a connected neighbourhood U of x_0 such that $U \subseteq U_1 \cap U_2$. Since $\lim_{n \to \infty} r_n(x_0) = x_0$, there exists a number n_1 such that $r_n(x_0) \in U \cap E$ for all $n \geq n_1$. Let $N = \max\{n_0, n_1\}$ and

$$F = \bigcup_{n \geq N} r_n(U).$$

We show that $F \subseteq W$. Let $x \in U$ and $n \geq N$. Then,

$$d(r_n(x), x_0) = d(r_n(x), r(x_0)) \leq d(r_n(x), r(x)) + d(r(x), r(x_0)) < \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}.$$

Thus, $r_n(x) \in B_{\varepsilon/2}(x_0)$. Then, $\bigcup_{n \geq N} r_n(U) \subseteq B_{\varepsilon/2}(x_0)$. Hence,

$$F \subseteq B_{\varepsilon/2}(x_0) \subseteq W.$$

Moreover, $r(U) \subseteq F$, provided $\lim_{n \to \infty} r_{N+n}(x) = r(x)$ for every $x \in U$. Observe that $U \cap E = r(U \cap E) \subseteq r(U)$. Therefore,

$$x_0 \in U \cap E \subseteq F \subseteq W,$$

which implies that F is a closed neighbourhood of x_0 in E.

It remains to prove that F is a connected set. To obtain a contradiction, assume that $F = F_1 \cup F_2$, where F_1 and F_2 are nonempty disjoint closed subsets of F. Clearly, $F \cap U \neq \emptyset$.

Consider the case $F_i \cap U \neq \emptyset$ for $i = 1, 2$. The continuity of r_n implies that $r_n(U)$ is a connected set for every $n \geq 1$. Since, $r_n(U) \subseteq F$, $r_n(U) \subseteq F_1$ or $r_n(U) \subseteq F_2$ for every $n \geq N$. Choose $x_i \in F_i \cap U$ for $i = 1, 2$. Taking into account that $\lim_{n \to \infty} r_n(x_i) = x_i$ for $i = 1, 2$, we choose a number $k \geq N$ such that $r_n(x_i) \in F_i$ for all $n \geq k$ and for $i = 1, 2$. Then, $r_k(U) \subseteq F_1 \cap F_2$, which implies a contradiction.
Now, let \(F_1 \cap U \neq \emptyset \) and \(F_2 \cap U = \emptyset \). Then, \(U \cap E \subseteq F_1 \). Since \(r_n(x_0) \in U \cap E \), \(r_n(x_0) \in F_1 \), consequently, \(r_n(U) \subseteq F_1 \) for all \(n \geq N \). Then, \(F \subseteq \overline{F_1} = F_1 \). Therefore, \(F_2 = \emptyset \), a contradiction. One can similarly prove that the case when \(F_1 \cap U = \emptyset \) and \(F_2 \cap U \neq \emptyset \) is impossible.

Hence, the set \(F \) is connected and \(x_0 \in WLC(E) \). □

Note that we cannot replace the set \(R((r_n)_{n=1}^{\infty}, r, X) \) with a wider set \(C(r) \) of all points of continuity of the mapping \(r \) in Theorem 6.1 as the following example shows.

Example 6.2. There exists an arcwise connected closed subspace \(E \) of \(\mathbb{R}^2 \) and a \(B_1 \)-retraction \(r: \mathbb{R}^2 \to E \) such that \(C(r) \cap E \not\subseteq WLC(E) \).

Proof. Let \(a_0 = (0; 0) \), \(a_n = (1; n) \) for \(n \geq 1 \) and \(X = \{a_n : n = 0, 1, 2, \ldots \} \). Denote by \(v a_n \) the segment which connects the points \(v = (1; 0) \) and \(a_n \) for every \(n = 0, 1, \ldots \) Define \(E = \bigcup_{n=0}^{\infty} v a_n \). Then, \(E \) is an arcwise connected compact subspace of \(\mathbb{R}^2 \) and \(WLC(E) = (E \setminus v a_0) \cup \{v\} \). For all \(x \in \mathbb{R}^2 \), write

\[
r(x) = \begin{cases} x & \text{if } x \in E, \\
a_0 & \text{if } x \notin E. \end{cases}
\]

It is easy to see that \(r: \mathbb{R}^2 \to E \) is continuous at the point \(x = a_0 \). We show that \(r \in B_1(\mathbb{R}^2, E) \). Since \(X \setminus E = F_\sigma \), choose an increasing sequence of closed subsets \(X_n \subseteq \mathbb{R}^2 \) such that \(\mathbb{R}^2 \setminus E = \bigcup_{n=1}^{\infty} X_n \). Let \(E_n = \bigcup_{k=0}^{n} v a_k \), \(n \geq 1 \). For every \(n \in \mathbb{N} \) define \(A_n = X_n \cup E_n \). Then, for every \(n \), the set \(A_n \) is closed in \(\mathbb{R}^2 \), \(A_n \subseteq A_{n+1} \) and \(\bigcup_{n=1}^{\infty} A_n = \mathbb{R}^2 \). Clearly, the restriction \(r|_{A_n}: A_n \to E_n \) is continuous for every \(n \). By the Tietze Extension Theorem there is a continuous extension \(f_n: \mathbb{R}^2 \to \mathbb{R}^2 \) of \(r|_{A_n} \) for every \(n \). Notice that for every \(n \) there exists a retraction \(\alpha_n: \mathbb{R}^2 \to E_n \). Let \(r_n = \alpha_n \circ f_n \). Then, \(r_n: \mathbb{R}^2 \to E_n \) is a continuous mapping such that \(r_n|_{A_n} = r|_{A_n} \) for every \(n \).

It remains to show that \(\lim_{n \to \infty} r_n(x) = r(x) \) for all \(x \in \mathbb{R}^2 \). Indeed, fix \(x \in \mathbb{R}^2 \). Then there is a number \(N \) such that \(x \in A_n \) for all \(n \geq N \). Then \(r_n(x) = r(x) \) for all \(n \geq N \). Hence, \(r \in B_1(\mathbb{R}^2, E) \). □

Theorem 6.3. Let \(X \) be a locally connected Baire space and \(E \) be a metrizable \(B_1 \)-retract of \(X \). Then, the set \(E \setminus WLC(E) \) is of the first category in \(X \).

If, moreover, \(X \) has a regular \(G_\delta \)-diagonal and \(E \) is dense in \(X \), then \(WLC(E) \) is a dense \(G_\delta \)-subset of \(X \).

Proof. Let \(d \) be a metric on the set \(E \) which generates its topological structure. Consider a \(B_1 \)-retraction \(r: X \to E \) and choose a sequence \((r_n)_{n=1}^{\infty} \) of continuous mappings \(r_n: X \to E \) such that \(\lim_{n \to \infty} r_n(x) = r(x) \) for all \(x \in E \).

Denote \(R = R((r_n)_{n=1}^{\infty}, r, X) \). Then, \(R \cap E \subseteq WLC(E) \) by Theorem 6.1. According to Osgood’s theorem [9], \(X \setminus R \) is an \(F_\sigma \)-set of the first category in \(X \). Hence, \(E \setminus WLC(E) \) is a set of the first category in \(X \).
OLENA KARLOVA

Now, assume that X has a regular G_δ-diagonal and $\overline{E} = X$. It follows from [5, Proposition 2.2] that E is G_δ in X. Moreover, the set R is dense in X, since X is Baire. Then, $R \cap E$ is dense in X. Hence, $WLC(E)$ is dense in X. Observe that $WLC(E)$ is a G_δ-subset of E by [7, p. 233]. Then, $WLC(E)$ is G_δ in X. □

The following example gives a negative answer to Question 1.3.

Example 6.4. There exists an arcwise connected G_δ-set $E \subseteq \mathbb{R}^2$ such that E is the perfect cone over zero-dimensional metrizable separable space $X \subseteq \mathbb{R}$ and E is not a B_1-retract of \mathbb{R}^2.

Proof. Let I be the set of irrational numbers and $X = I \cap [0, 1]$. Define

$$E = \{(x, t) : x \in X, t \in [0, 1]\}.$$

Then, $E \simeq \Delta_p(X)$. Moreover, E is an arcwise connected G_δ-subset of \mathbb{R}^2. Clearly, $\overline{E} = [0, 1]^2$ and $WLC(E) = \{v\}$. Therefore, Theorem 6.3 implies that E is not a B_1-retract of $[0, 1]^2$. Consequently, E is not a B_1-retract of \mathbb{R}^2. □

Acknowledgement. The author would like to thank the referee for his helpful and constructive comments that greatly contributed to improving the final version of the paper.

REFERENCES

ON PERFECT CONES AND ABSOLUTE BAIRE-ONE RETRACTS

Received May 5, 2014

Chernivtsi National University
Department of Mathematical Analysis
Kotsjubynskoho 2
Chernivtsi 58012
UKRAINE
E-mail: maslenizza.ua@gmail.com