Low-Lying Levels in Odd-Mass Au Nuclei

E. Bashandy, M. S. El-Nesr and M. G. Mousa

Nuclear Physics Department, Atomic Energy Establishment, Cairo, Egypt

(Z. Naturforsch. 28 a, 1603—1606 [1973]; received 9 March 1973)

The low energy levels of 197Au and 199Au have been investigated by means of a high resolution double focusing beta-ray spectrometer. The conversion electron ratios as well as the K-conversion coefficients of low-lying transitions were determined. The K-internal conversion coefficients of the 191 keV transition in 197Au indicated no EO contribution. The level structure of the lower excited states in 197Au and 199Au are discussed in terms of existing nuclear models.

Introduction

The level schemes of odd-mass gold nuclei are of theoretical interest. Kisslinger and Sorensen1 have calculated the energy levels taking into account the residual nuclear interactions. This suggests that the level schemes of odd-mass gold nuclei can be described as due to the coupling of the odd particle motion with the surface vibrations of the even core. The low-lying levels of odd-mass isotopes of Ag, Au and Tl have been interpreted by de-Shalit2 as the coupled states of a single odd particle to the excited core. Alga and Ialongo3 have calculated the energies and the transition probabilities of low-lying levels in 197Au by using the intermediate coupling model with appropriately assumed values for several parameters. The low-lying level schemes of 193Au, 195Au, and 197Au are found to be similar, but that of 199Au according to previous workers differs considerably. Since the neutrons are being filled pairwise into the next major shell ($N = 126$) the addition of two neutrons to 197Au should not have a very large effect on the motion of 79th proton in the lower major shell ($P = 82$). Therefore one should expect a low-lying level scheme for 199Au similar to that of the other odd-mass gold nuclei.

Recently we have studied4, 5, 6 the level schemes of 197Au and 199Au. However, we felt that more information on low-lying levels in this interesting region could be obtained if the measurements were carried out with enriched isotopes and improved techniques. In view of such interest, it was decided to examine experimentally the low-lying excited states of 197Au and 199Au and to compare them with the theoretical predictions.

Reprint requests to: Prof. Dr. E. Bashandy, Nuclear Physics Department, Atomic Energy Establishment, Cairo, Egypt.

Experimental Procedures

The excited levels in 197Au and 199Au were studied from the decay of 86 min 197mPt, 18 h 197Pt and 30 min 199Pt. Energies and relative intensities of conversion electrons were measured by means of a high resolution iron-free double focusing beta-ray spectrometer7 ($q_0 = 50$ cm). With this instrument relative momentum measurements could be made with an accuracy of a few parts in 10^5. With a 1.2×2 cm2 source and 2 mm detector slit a resolution of 0.15% was obtained. The detector employed in the present studies was a G.M. counter with a 1.6 mg/cm2 mica end window.

The platinum activities were produced by thermal neutron bombardment of natural platinum and on enriched sample of 198Pt ($\sim 35\%$) over a period of 5 hours and 48 hours in the U.A.R. Reactor at Inchass. The flux was about 10^{13} neutrons/cm2 sec. For the internal conversion studies, platinum was uniformly sputtered on aluminium foil of thickness ~ 1 mg/cm2. The sputtered material was distributed in a rectangular area (0.2×2 cm2). The thickness of the material deposited was estimated to be ~ 100 µg/cm2.

The internal conversion spectra for lower transitions in 197Au and 199Au, Fig. 1, were studied carefully in the double focusing beta-ray spectrometer. The measurements of higher transitions have been previously reported4, 5, 6 by the author. All of the conversion lines were measured at least twice with different sources. Two transitions, at 77 and 191 keV, were found to coincide in energy with transitions in 197Au and 199Au. To obtain the intensities of the corresponding conversion lines in 199Au, their decay was followed and the contribution from 197Au could thus be subtracted. A typical L-conversion spectrum for the 77 keV transition in 197Au is shown on Figure 2. It can be seen that L_1, L_2, and L_3 lines are almost completely resolved. The intensity of each line was determined by summing all pure counts reduced to the equal
momentum intervals. The K and L conversion lines for the 191 keV transition in 199Au are presented on Figure 3. In the present investigation, the K-conversion line of most of the transitions could be measured. On Fig. 4 the K-conversion lines of the 246 and 317 keV transitions in 199Au are shown.

The K-conversion coefficients are obtained by combining the conversion electron intensities and the gamma-ray intensities from our previous $^5,^6$ measurements. Normalization was made assuming that the 185.8 keV transition in 199Au is pure E 2, and that the 542 keV transition has an M 1 character. Thus the K-conversion coefficients of several

Fig. 1. Low-lying energy levels of 197Au and 199Au.

Fig. 2. The L-conversion lines of the 77 keV transition in 197Au.

Fig. 3. The internal conversion lines of the 191 keV transition in 197Au.
transitions in both 197Au and 199Au are determined and listed in Table 1. Multipolarities of gamma-rays are obtained by comparing the experimental conversion coefficients with the theoretical values.8

Table 1. K-conversion coefficients of low-lying transitions in 197Au and 199Au.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Transition energy (keV)</th>
<th>Experimental K-conversion coefficients</th>
<th>Multipolarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>197Au</td>
<td>191.4</td>
<td>0.915 ± 0.098</td>
<td>M1 + 4% E2</td>
</tr>
<tr>
<td></td>
<td>268.2</td>
<td>0.215 ± 0.026</td>
<td>M1 + E2</td>
</tr>
<tr>
<td></td>
<td>279.3</td>
<td>0.305 ± 0.31</td>
<td>M1 + 12% E2</td>
</tr>
<tr>
<td></td>
<td>269.2</td>
<td>2.124 ± 0.258</td>
<td>M4</td>
</tr>
<tr>
<td>199Au</td>
<td>219.3</td>
<td>0.52 ± 0.5</td>
<td>M1 + 27% E2</td>
</tr>
<tr>
<td></td>
<td>225.6</td>
<td>0.49 ± 0.06</td>
<td>M1 + 25% E2</td>
</tr>
<tr>
<td></td>
<td>246.4</td>
<td>0.45 ± 0.04</td>
<td>M1 + 8% E2</td>
</tr>
<tr>
<td></td>
<td>317.0</td>
<td>0.194 ± 0.015</td>
<td>M1 + 23% E2</td>
</tr>
<tr>
<td></td>
<td>465.4</td>
<td>0.018 ± 0.003</td>
<td>E2</td>
</tr>
<tr>
<td></td>
<td>493.3</td>
<td>0.019 ± 0.003</td>
<td>E2</td>
</tr>
<tr>
<td></td>
<td>542.5</td>
<td>0.059 ± 0.007</td>
<td>M1</td>
</tr>
</tbody>
</table>

Results and Discussion

The energy levels of 197Au were constructed on the basis of the accurate energy measurements of our previous work.5 For all excited levels, spin and parity assignments have been based on the experimental data of the present as well as our previous work. The first excited state at 77 keV with spin 1/2 + has been discussed earlier. In the conversion electron spectrum the L$_{1}$, L$_{2}$, L$_{3}$, M and N lines of the 77 keV transition were identified and a predominant M1 character with a small E2 admixture has been assigned for this transition. The mixing ratio was calculated from the L$_{1}$ + L$_{2}$/L$_{3}$ subshell ratio. It is in good agreement with the recent result obtained by Krpic et al., where 10% E2 admixture was found. The internal K-conversion coefficient of the 191 keV transition $\kappa_{K} = 0.915 \pm 0.098$ obtained previously agrees with the value quoted by Krpic et al. $\kappa_{K} = 0.86 \pm 0.03$. The mixing ratio $\delta^2 = E2/M1$ has been estimated from the K-conversion coefficient and the conversion electron ratio, to be 0.04. However, the value reported by Krpic et al. is $\delta^2 = 0.17 \pm 0.04$ and the calculated value according to the De-Shalit model is 0.04 ± 0.02. By inspecting these values we can conclude that our result is in good agreement with the De-Shalit model, and the internal conversion result does not support the previous suggestion of an E0 contribution to the 191 keV transition. The 3/2 + and 5/2 + assignments to the levels 268 and 279 keV respectively were proved to be evident and discussed in our previous work. The meta stable state of 197Au has been assigned as 11/2 —, as supported by the decay of the 409 keV M4 gamma ray to the ground state and of the 130 keV E3 gamma ray to the 279 keV (5/2 +) level in 197Au.

The gamma rays from the decay of 199Pt to levels in 199Au have been carefully studied and the spin assignment of levels in 199Au were confirmed. The ground state of 199Au was shown to be 3/2 + and the first excited state at 77 keV has been assigned 1/2 +. The states at 317, 323, 493, 542, and 548 keV were assigned as 5/2 +, 3/2 +, 7/2 +, 5/2 + and 11/2 — respectively. These assignments are all consistent with the present multipolarity data of gamma-rays feeding and de-exciting the mentioned levels. Higher levels in 199Au were studied and discussed briefly in our previous work.

Spin 1/2 + has been assigned to the first excited state in 193Au, 195Au, 197Au and 199Au on sufficient experimental evidence. The 1/2 + state could be described as due to the S1/2 proton configuration. Then the transition from the first excited state S1/2 to the ground state d3/2 is expected to be an l-forbidden M1 transition. From the lifetime
measurements of the first excited states of \(^{193}\text{Au}, \, \, \, ^{195}\text{Au}, \, \, \, ^{197}\text{Au}\) and \(^{199}\text{Au}\) such transitions are identified\(^{10}\). It has been shown by De-Shalit\(^{2}\) that the lowest excited states of odd-proton nuclei in the \(\text{Au-Tl}\) region may be interpreted as members of the multiplet of states arising from a coupling between the particle forming the ground state, and the collective \(2^+\) excitation of the "core" of these nuclei. It was shown\(^{10}\) that the systematic behaviour of the \(E2\) transition probability between the first excited state and the ground state in odd-proton \(\text{Au}\) and \(\text{Tl}\) nuclei is reproduced rather well by this model, while the poor agreement is observed with the calculations of Kisslinger and Sorensen\(^{1}\) with a pairing plus quadrupole residual force, in which the \(\frac{1}{2}^+\) state is given predominantly as \(S_{\frac{1}{2}}^+\).

In the \(\text{Au}\) nuclei four excited states with the spins \(\frac{1}{2}, 3\frac{1}{2}, 5\frac{1}{2}\) and \(7\frac{1}{2}\) should be formed by coupling the \(d_{\frac{3}{2}}\) particle of the ground state to the \(2^+\) excitation of the core. Thus it appears that the simple core excitation model has to be modified in order to account for the magnetic properties of the \(\text{Au}\) isotopes. It is likely that the mixing with the \(d_{\frac{5}{2}}\) and \(S_{\frac{1}{2}}\) single-particle states expected at low energy must be considered. An additional \(5\frac{1}{2}^+\) state was found at \(542\) keV in \(^{199}\text{Au}\). Since the ground state decay is somewhat favoured in comparison with other decay modes, one may tentatively classify this state as the \(d_{\frac{5}{2}}\) state. However, there is no radical difference between the decay mode of this state and the \(5\frac{1}{2}^+\) state at \(317\) keV which may indicate a strong mixing of these states.
