Synthesis of Some New Pyrrolo Heterocycles of Pharmaceutical Interest from 1,4-Diphenylpyrrolidine-2,3,5-trione*

Mohamed Abbas Metwally* and M. A. Sofan
Department of Chemistry, Faculty of Science, University of Mansoura, Mansoura, Egypt
Z. Naturforsch. 45b, 382–384 (1990); received August 24, 1989

Pyrolo Heterocycles, 1,4-Diphenylpyrrolidine-2,3,5-trione

Continuing earlier studies designed to obtain derivatives of pharmacological interest, some novel compounds 2, 5, 6, 7 and 8 were prepared using 1,4-diphenylpyrrolidine-2,3,5-trione (1) and 1,2-phenylenediamines, o-aminophenol, 1,3-diphenylacetone and thiosemicarbazide, respectively. The hydrazino derivative (8) was obtained from 7 and hydrazine hydrate. Structural identification was obtained by 1H NMR, mass spectra and IR spectral data.

Pyrrolidines are reported to act as a respiratory stimulant and anticonvulsant agents [1, 2]. A search of the literature showed that condensed heterocycles having a fused pyrrolo nucleus have attracted little attention, but some interest has come from alkaloids bearing this ring system.

This work has focussed on exploring the synthetic potentialities of the heterocyclic 1,4-diphenylpyrrolidine-2,3,5-trione (1) [3] as a key intermediate for the synthesis of some condensed heterocycles having a pyrrolo nucleus.

A survey of the literature showed that no reactions of 1 with 1,2-diamines has been reported.

Continuing our earlier [4] studies designed to obtain derivatives of pharmacological interest, some novel compounds (2, 5, 6, 7 and 8) were prepared using 1,4-diphenylpyrrolidine-2,3,5-trione (1) and 1,2-phenylenediamines, o-aminophenol, 1,3-diphenylacetone and thiosemicarbazide.

Reaction of 1 with 1,2-phenylenediamines yielded the pyrroloquinoloxalines 2, 3 or 4. In principle these compounds could be expected to exist in tautomeric forms. The IR and 1H NMR spectra favours structure 2a−d rather than 3 or 4. These compounds showed absorption bands at 1570−1595 cm⁻¹ (C=N), 1660−1680 cm⁻¹ (C=O) and 3090−3230 cm⁻¹ (enolized OH). The 1H NMR (400 MHz) of 2a displayed signals at δ 7.0−7.6 (m, ArH), 5.6 (s, 1 H, Ph−H−C=O) and 10.28 (s, 1 H, OH). The mass spectrum of 2a gave an M⁺ at m/z 337 fitted exactly with the obtained molecular weight.

In connection with the above successful reactions, it was the intention to examine the reaction of 1 with o-aminophenol. Thus, condensation of 1 with o-aminophenol in glacial acetic acid afforded the pyrrolobenzoxazine (5) in quantitative yield.

The formation of 5 finds support from its correct analytical and spectral data, the IR spectrum showed absorption bands at 1605 (C=N) and 1665 cm⁻¹ (C=O). The 1H NMR spectrum displayed signals at δ 7.4−8.07 (m, ArH). Further evidence for the formation of 5 was proved from the mass spectrum which revealed the M⁺ at m/z 338 fitted exactly with the obtained molecular weight.

*Reprint requests to Prof. Dr. M. A. Metwally.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932−0776/90/0300−0382 $ 01.00/0
Compound 1 condensed with 1,3-diphenylacetone in presence of 20% aqueous potassium hydroxide to give the pyrrolocyclopentenone (6) in a good yield. Assignment of the product as 6 rather than 7 was partly based on the appearance in the IR spectrum of a peak at 3235 cm\(^{-1}\), characteristic of enolized carbonyl.

1,4-Diphenylpyrrolidine-2,3,5-trione (1) was allowed to react with thiosemicarbazide to afford 1,2,4-triazino[5,6-b]pyrrole-3-thione (7). The latter, one refluxing with hydrazine hydrate, afforded the corresponding 3-hydrazino-1,2,4-triazino[5,6-b]pyrrole (8). In addition to the correct analytical data, the IR spectrum of 7 showed characteristic bands at 1060 (C=S), 1670 (C=O) and 3250 cm\(^{-1}\) (NH). In the IR spectrum of 9 no absorption bands for C=S has been observed.

 Experimental

All melting points (°C) are uncorrected and were taken in a Fisher electric melting point apparatus.

Infrared spectra were performed on a Unicam SP 2000 Infrared spectrophotometer using KBr pillet technique. \(^1\)H NMR spectra were obtained in DMSO (d\(_6\)) on Bruker 400 MHz apparatus. Mass spectra were measured on Varian MAT 711, direct inlet at 70 eV.

1,4-Diphenylpyrrolidine-2,3,5-trione (1)

This compound was prepared according to methods reported previously [3].

Pyroloquinoidalines (2a–d)

A mixture of 1 (0.004 mole) and 1,2-phenylenediamines, namely o-phenylenediamine, 3-methyl-1,2-phenylenediamine, 4-chloro-1,2-phenylenediamine and/or 4-nitro-1,2-phenylenediamine (0.004 mole) in (30 ml) glacial acetic acid was heated at 90–100 °C for 30–60 min and filtered while hot. The solid product that separated in each case was filtered off and recrystallized from acetic acid to give compounds 2a–d. The results are given in Table I.

Pyrolobenzoxazine (5)

The method followed for the preparation of compounds 2a–d were adapted. Compound 5 was crystallized from acetic acid to give compound 5 (cf. Table I).

Pyrolocyclopentenone (6)

A mixture of 1 (0.01 mole) and 1,3-diphenylacetone (0.015 mole) in ethanol (25 ml) was treated with 20% aqueous potassium hydroxide solution (10 ml), then set aside at room temperature for 2–3 days. The reaction mixture was poured into ice-cold water, and the solid separated was filtered off, crystallized from ethanol to give compound 6 (cf. Table I).

1,2,4-Triazino[5,6-b]pyrrole-3-thione (7)

This compound was prepared by refluxing the corresponding 2,3,5-trione with thiosemicarbazide in alkaline medium by following the method of Gladych, et al. [5] (cf. Table I).

3-Hydrazino-1,2,4-triazino[5,6-b]pyrrole (8)

1,2,4-Triazino[5,6-b]pyrrole-3-thione (7, 1 g) was refluxed with hydrazine hydrate (8 ml), for 4–5 h. On cooling, crystals separated, which were filtered and crystallized from ethanol to give compound 8 (cf. Table I).
<table>
<thead>
<tr>
<th>Compd.</th>
<th>Colour</th>
<th>Yield [%]</th>
<th>M. p. [°C]</th>
<th>Mol. formula (M. wt.)</th>
<th>Found [%], (Calcd) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a*</td>
<td>Pale yellow</td>
<td>80</td>
<td>>270</td>
<td>C$_7$H$_8$N$_2$O (337.36)</td>
<td>78.31, (78.39, 4.48, 12.45)</td>
</tr>
<tr>
<td>2b</td>
<td>Brown</td>
<td>75</td>
<td>205</td>
<td>C$_7$H$_8$N$_2$O (351.39)</td>
<td>78.61, (78.52, 4.69, 12.05)</td>
</tr>
<tr>
<td>2c</td>
<td>Brownish yellow</td>
<td>78</td>
<td>260</td>
<td>C$_7$H$_4$N$_2$OCl (371.807)</td>
<td>71.06, (71.15, 3.79, 11.3)</td>
</tr>
<tr>
<td>2d</td>
<td>reddish brown</td>
<td>85</td>
<td>220</td>
<td>C$_7$H$_4$N$_2$O$_3$ (382.36)</td>
<td>69.1, (69.32, 3.52, 14.73)</td>
</tr>
<tr>
<td>5*</td>
<td>Brownish yellow</td>
<td>65</td>
<td>178</td>
<td>C$_7$H$_4$N$_2$O$_2$ (338.35)</td>
<td>78.09, (78.16, 4.17, 8.28)</td>
</tr>
<tr>
<td>6</td>
<td>Yellow</td>
<td>68</td>
<td>117</td>
<td>C$_7$H$_4$NO$_2$ (439.488)</td>
<td>84.71, (84.55, 4.73, 3.42)</td>
</tr>
<tr>
<td>7</td>
<td>Pale yellow</td>
<td>72</td>
<td>120</td>
<td>C$_7$H$_4$N$_2$SO (320.364)</td>
<td>62.79, (62.85, 3.59, 17.39)</td>
</tr>
<tr>
<td>8</td>
<td>Colourless</td>
<td>63</td>
<td>125</td>
<td>C$_7$H$_4$N$_2$O (318.33)</td>
<td>64.13, (64.23, 4.59, 26.11)</td>
</tr>
</tbody>
</table>

* MS: m/z 337 (M$^+$; 5%), 308 (3%), 262 (8%), 236 (100%), 207 (20%), 176 (12%); + MS: m/z 338 (M$^+$; 4%), 265 (100%), 236 (22%), 209 (18%), 145 (60%).