On the Reactivity of Pyridoxal-5'-phosphate with Yeast tRNAPhe and tRNATyr

Nobuo Okabe* and Friedrich Cramer

Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Hermann-Rein-Straße 3, D-3400 Göttingen

Z. Naturforsch. 35 c, 522-525 (1980); received February 11/March 17, 1980

Yeast tRNAPhe, Yeast tRNATyr, Pyridoxal-5'-phosphate

Yeast tRNAPhe and tRNATyr were reacted with the fluorescent reagent pyridoxal-5'-phosphate and the modified tRNAs were analysed with respect to the number and position of modified nucleosides and with respect to aminoaaclylation.

a) Following the intrinsic fluorescence of pyridoxal-5'-phosphate, the treatment of tRNATyr with increasing amounts of pyridoxal-5'-phosphate revealed about 50 mol of reagent even per one mol of tRNATyr. After borohydride reduction (in order to stabilize the linkage) of this modified tRNATyr and purification with reverse phase chromatography a modified tRNATyr was obtained carrying about 2 mol of the reagent.

b) Both tRNATyr and tRNAPhe treated with pyridoxal-5'-phosphate and reduced exhibited almost unchanged aminoaacylation as compared to the unmodified tRNAs.

c) Pyridoxal-5'-phosphate treated and reduced tRNAPhe and tRNATyr were digested with ribonuclease T\textsubscript{1} and the resulting oligonucleotides were separated. However, no fluorescent oligonucleotide and no difference to an oligonucleotide pattern obtained from unmodified tRNA were observed.

Thus, pyridoxal-5'-phosphate might have been bound to the highly purified yeast tRNAPhe and tRNATyr samples either via an unstable linkage or not covalently. This result is controversial with respect to the specific reaction of pyridoxal-5'-phosphate with unfractionated tRNAs from colon carcinoma and tRNAs from \textit{E. coli} as reported in the literature.

Introduction

The aim of modification of tRNA by a fluorescent reagent is to obtain information on tRNA structure as well as on tRNA-protein interaction. The fluorescent dye has to bind specifically to one or a few nucleosides in the tRNA [for reviews see 1-4] and the reaction conditions have to be mild so that neither damage to the structure of tRNA nor incorrect recognition resulting in misaminoaacylation occurs.

* Permanent address: Osaka University, Faculty of Pharmaceutical Sciences, Osaka 565, Japan.

Reprint requests to Dr. F. Cramer.

0341-0382/80/0500-0522 $ 01.00/0

Recently Kopelovich and Wolfe [5] modified unfractionated tRNA from human colon carcinoma and some \textit{Escherichia coli} tRNAs with pyridoxal-5'-phosphate. They suggested that the aldehyde group of the reagent might react with an amino group of the tRNA and the resulting Schiff base might be transformed in a stable covalent C-N linkage by borohydride reduction. In particular guanosine 20 in the dihydrouridine loop of the tRNA seemed to be reactive from inhibition studies with N-acetoxy-2-acetylaminofluorene [6] using unfractionated \textit{E. coli} tRNA. This course of reaction was also suggested from the reaction of the related aldehydes kethoxal and glyoxal with tRNAPhe as reported in the literature [7].

Since pyridoxal-5'-phosphate should react mildly [5], is fluorescent [8], and is not very large, we aimed to prepare yeast tRNAPhe and tRNATyr modified in the dihydrouridine loop with this reporter group.

![Chemical structure of pyridoxal-5'-phosphate](image)

Experimental

Materials

Pyridoxal-5'-phosphate was purchased from Boehringer (Mannheim), sodium borohydride, salts and buffer substances (ultrapure grade) from Merck (Darmstadt), RNase T\textsubscript{1}, E.C. 3.1.4.8, from Sankyo (Tokyo, Japan), snake venom phosphodiesterase (1 mg/ml), E.C. 3.1.4.18, and alkaline phosphatase from \textit{E. coli} (1 mg/ml), E.C. 3.1.3.1, from Boehringer (Mannheim), and [14C]phenylalanine and [14C]tyrosine (50 Ci/mol) from Schwarz Bioresearch (Orangeburg, USA). tRNAPhe and phenylalanyl-tRNA synthetase, E.C. 6.1.1.20, from yeast were isolated according to [9, 10], tRNATyr and tyrosyl-tRNA synthetase, E.C. 6.1.1.1, from yeast according to [11].

Spectroscopy

Ultraviolet absorbance measurements were performed with a Shimazu double beam spectropho-
tometer UV-200 and a Zeiss PMQ-3 spectrophotometer. Relative fluorescence intensities were measured with a modified Farrand MK-1 spectrofluorometer equipped with a Varian-F-80 A X-Y-recorder.

Fluorescence titration

100 µl samples containing 1 A$_{260}$ unit of tRNA and various amounts of reagent were incubated at 37 °C for 30 min in 20 mM borate buffer, pH 8.0, containing 5 mM MgSO$_4$. The reaction mixture was passed through a Sephadex G-25 column (1.7 x 38 cm) equilibrated with water at pH 6.0. The fluorescence intensity of the eluate was measured by using 37 μM pyridoxal-5’-phosphate in aqueous solution at pH 6.0 as a standard at 20 °C. The observed fluorescence intensity was then calculated as relative fluorescence intensity per A$_{260}$ unit of tRNA.

Reaction of pyridoxal-5’-phosphate with tRNA

30–300 nmol tRNA (20–200 A$_{260}$ units) were reacted with pyridoxal-5’-phosphate dissolved in water of pH 8.0, in 20 mM borate buffer, pH 8.0, containing 5 mM MgSO$_4$ in a total volume of 1–2 ml. The reaction was continued at 37 °C for 30–60 min. Then the mixture was cooled in the ice bath and tRNA was precipitated by adding three volumes of cold ethanol in 0.2 M KCl. After centrifugation, the precipitant was washed with cold ethanol followed by vacuum drying. Then it was dissolved in 1 ml of 0.2 M Tris-HCl, pH 7.5, containing 5 mM MgCl$_2$ and reduced by adding a 3500–7000 fold molar excess of NaBH$_4$ dissolved in 500 µl of cold 0.2 M Tris-HCl, pH 7.5, containing 5 mM MgCl$_2$. Reduction was continued for 15–30 min at 0 °C in the dark, and then free NaBH$_4$ was hydrolyzed by addition of 1 N acetic acid to pH 4 in the ice bath. tRNA was separated from the reagents on a Sephadex G-25 column (1.7 x 38 cm) equilibrated with water. The pyridoxal-5’-phosphate treated tRNA was eluted with a linear gradient of 2 x 200 ml 0 M to 0.3 M NaCl in 20 mM Tris-HCl, pH 7.5 at a flow rate of 16 ml/h.

34 A$_{260}$ units of tRNATyr treated with NaBH$_4$ and 3 A$_{260}$ units of tRNAPhe treated with pyridoxal-5’-phosphate and NaBH$_4$ as described above were incubated with 100 and 250 units of RNase T$_1$ in 1.5 ml of 50 mM Tris-HCl, pH 7.5 at 37 °C for 16 h, respectively. The reaction mixture was adjusted to 20 mM Tris-HCl, pH 7.5 and 7 M urea and then loaded on a DEAE-cellulose column (0.7 x 85 cm) equilibrated with 20 mM Tris-HCl, pH 7.5. The column was eluted with a linear gradient of 2 x 200 ml 0 M to 0.3 M NaCl in 20 mM Tris-HCl, pH 7.5 at a flow rate of 16 ml/h.

Results

Reaction of tRNATyr and tRNAPhe with pyridoxal-5’-phosphate

tRNATyr was reacted with a 10–500 fold excess of pyridoxal-5’-phosphate in an aqueous borate buffer in the presence of Mg$^{2+}$ at pH 8 and the excess of reagent was removed by gel filtration. This pyridoxal-5’-phosphate treated tRNATyr exhibited fluorescence excitation and emission maxima of 330 nm and 420 nm (Fig. 1), which correspond to the respective maxima of free pyridoxal-5’-phosphate in aqueous solution. The measured fluorescence was normalized to a standard solution of the reagent. The number of pyridoxal-5’-phosphate molecules bound to tRNATyr was estimated assuming that its
Fig. 1. Relative fluorescence intensity of pyridoxal-5'-phosphate treated tRNA^Tyr at various initial molar ratios of reagent to tRNA^Tyr. Excitation was done at 330 nm, emission was measured at 420 nm. Insert: uncorrected fluorescence excitation and emission spectra of pyridoxal-5'-phosphate treated tRNA^Tyr (in 10^{-4} M aqueous solution at pH 3.8 and 20 °C). Band widths of 5 and 10 nm at the excitation and emission side, respectively, were used.

Fluorescence quantum yield is unchanged upon binding to tRNA as is the quantum yield of pyridoxamine-5'-phosphate upon complex formation with human or bovine serum albumin [8]. As is evident from Fig. 1 saturation of tRNA^Tyr was observed at a molar ratio of pyridoxal-5'-phosphate over tRNA^Tyr in the range of 50-200.

In contrast the number of pyridoxal-5'-phosphate molecules bound to tRNA^Tyr considerably changed when borohydride reduction [12] was performed after the pyridoxal-5'-phosphate treatment and the tRNA^Tyr was then purified by RPC-5 chromatography. It eluted in a major fraction corresponding to 95% of the applied tRNA^Tyr. The mean number of pyridoxal-5'-phosphate molecules bound to tRNA^Tyr in this fraction is 2.3, irrespective of the initial molar ratio of the reagent to tRNA^Tyr. No absorbance change was observed at all with this modified yeast tRNA^Tyr around 325 nm, whereas Kopelovich and Wolfe [5] with human and E. coli tRNAs reported appearance of an absorption peak at that wavelength.

With yeast tRNA^Phe the estimation of the number of pyridoxal-5'-phosphate molecules bound per molecule of tRNA^Phe by means of fluorescence was not possible, because of the overlapping emission spectra of pyridoxal-5'-phosphate and the Y base of tRNA^Phe. Nevertheless tRNA^Phe was treated in the same way as tRNA^Tyr and identified by oligonucleotide analysis.

Aminoacylation of pyridoxal-5'-phosphate treated tRNA^Phe and tRNA^Tyr

The aminoacylation was investigated under standard aminoacylation conditions [9-11] and determined to be 1600 pmol tyrosine per A_{260} unit to tRNA^Tyr and 1750 pmol phenylalanine per A_{260} unit of tRNA^Phe. Aminoacylation of the modified tRNAs as described above led to a small enhancement of 2% with tRNA^Tyr, whereas a reduction of 8% in aminoacylation was observed with tRNA^Phe. Thus the modification of tRNA^Phe and tRNA^Tyr with pyridoxal-5'-phosphate has only minor influence on the extent of aminoacylation compared to the native tRNAs.

Separation of oligonucleotides from ribonuclease T_{1} digestion of pyridoxal-5'-phosphate treated tRNA^Phe and tRNA^Tyr

Native tRNA^Phe was treated with sodium borohydride, digested with RNase T_{1}, and the resulting oligonucleotides were separated on DEAE cellulose (Fig. 2a). Concomitantly tRNA^Phe which was first
reacted with excess pyridoxal-5'-phosphate, subsequently reduced by sodium borohydride, was then digested with RNase T₁ and the resulting oligonucleotides were separated analogously (Fig. 2b). The composition of oligonucleotides and their respective elution volumes are nearly identical in both tRNA^{Phe} samples. However, no fluorescent oligonucleotide, resulting from modification with pyridoxal-5'-phosphate, was detected. Only one fluorescent oligonucleotide was observed in both elution patterns and was identified by nucleoside analysis as being the Y base containing dodecanucleotide.

tRNA^{Tyr} was treated analogously as tRNA^{Phe}, reduced with borohydride and digested in one case (data not shown), and reacted with pyridoxal-5'-phosphate prior to reduction and digested in the other case (Fig. 2c). Again, no fluorescent oligonucleotide, revealing the fluorescence characteristics of pyridoxal-5'-phosphate, could be detected.

Concluding Remarks

In the present investigation evidence is presented, that pyridoxal-5'-phosphate is not reacting with yeast tRNA^{Phe} and tRNA^{Tyr} with formation of a stable covalent linkage. Since linking via reduced Schiff base seems to be stable upon RNase T₁ digestion as reported in the case of proflavine and ethidium bromide linkage to tRNA^{Phe} [12], we have to conclude that with yeast tRNA^{Phe} and tRNA^{Tyr} pyridoxal-5'-phosphate may have not so a specific reactivity towards guanosines as has been reported previously [5] for unfraccionated human colon carcinoma tRNA and some E. coli tRNAs.

Acknowledgements

Dr. N. Okabe thanks the Alexander von Humboldt-Stiftung for supporting his stay in Germany and Dr. D. Gauss for discussions during the preparation of this manuscript.