Draculone, a New Anthraquinone Pigment from the Tropical Lichen

Melanotheca cruenta

Annick Mathey, Peter Spiteller and Wolfgang Steglich

Department Chemie der Ludwig-Maximilians-Universität, Butenandtstraße 5–13, Haus F, D-81377 München, Germany. Fax: +49-89-21 80-77 56. E-mail: wos@cup.uni-muenchen.de

Institut de Chimie des Substances Naturelles du CNRS, F 91198 Gif-sur-Yvette Cedex, France

* Authors for correspondence and reprint requests

Z. Naturforsch. 57c, 565–567 (2002); received March 8, 2002

Melanotheca cruenta = Pyrenula cruenta, Trypetheliaceae, Anthraquinones, Draculone

A new red anthraquinone, draculone, has been isolated from the corticolous tropical lichen Melanotheca cruenta (= Trypethelium cruentum = Pyrenula cruenta) together with minor quantities of the known anthraquinone pigment haematommone. The structure of draculone was determined as 2-acetyl-1,3,4,6,8-penta-hydroxyanthraquinone by spectroscopic methods.

Introduction

In continuing our studies on the chemistry of the tropical lichen family Trypetheliaceae, we report here the analysis of the species Melanotheca cruenta (Mont.) Feé, formerly named Trypethelium cruentum Mont. M. cruenta forms blood-red patches on sun-exposed branches of trees growing on the shores of lakes and marshes in Florida. The lichen was collected from the bark of Myrica cerifera and Ilex cassini. In this communication we report on the structure of draculone (1), the pigment responsible for the red colour. It is accompanied by haematommone (2), which has been previously isolated from Haematomma puniceum by Huneck et al. (1991).

Results and Discussion

The lichen was removed from the bark with a scalpel, washed with light petroleum and extracted with ethyl acetate. HPLC of the extract on reversed phase (RP-18) yielded two main fractions, which were analysed by UV/Vis, 1H NMR and 13C NMR spectroscopy as well as mass spectrometry. The yellow and major pigment was identified as haematommone (2) by comparison of its UV/Vis, EI-MS and 1H NMR data with those reported in the literature (Huneck et al., 1991). The red main pigment exhibits absorption maxima in the UV/Vis spectrum at $\lambda_{\text{max}} = 210, 232, 276, 306, 512,$ and 546 nm, suggesting an anthraquinone chromophore substituted with three α-OH groups (Thomson, 1971). The HR EI-MS shows a molecular ion at m/z 330, corresponding to the molecular formula $C_{16}H_{10}O_{8}$. On silylation with N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) a pentatrimethylsilyl derivative, 3, was formed suggesting the presence of five hydroxy groups. In the 1H NMR spectrum ([D$_{6}$]DMSO) a methyl singlet at $\delta_H 2.52$ and two doublets for meta-protons at $\delta_H 6.63$ and 7.19 ($^4J = 2.0$ Hz) are visible. The methyl protons exhibit HMBC correlations to a carbonyl group ($\delta_C 200.3$) indicating the presence of a COCH$_3$ group. This leads to structure (1) for the pigment, which was confirmed by 1H,1H-COSY, HSQC and HMBC experiments (Fig. 1). Due to the low solubility of 1 in most organic solvents, a complete set of 13C NMR data could only be obtained with the pertrimethylsilyl derivative 3. By virtue of its blood red colour we propose the name draculone for this pigment (Stoker, 1897).

The isolation of draculone (1) and haematommone (2) from Melanotheca cruenta correlates with the known occurrence of quinone pigments in the Trypetheliaceae family. Physcion and seca-
Ionic acid have been found in *Trypethelium elutreia* whilst trypethelone and derivatives are observed in cultures of the mycosymbiont of this species (Mathey et al., 1980). Physcion, endocrocin, isohypocrellin and related perylenquinones occur in *Laurera sanguinaria* and xanthorin in *Laurera purpurina* (Mathey, 1987; Mathey et al., 1987; 1994; Van Roy et al., 1995). Another feature of *Melanotheca cruenta* in common with the *Trypetheliaceae* family is the fluorescence of the four cells spores (Mathey and Hoder, 1978; Hoder and Mathey, 1980). On this basis it seems more reasonable to use the old name *Melanotheca cruenta* rather than *Pyrenula cruenta*.

Experimental

General

Preparative HPLC: Column: Nucleosil RP-18 (Macherey-Nagel, 250 × 20 mm; 7 μm, UV detection at 310 nm). UV: Perkin-Elmer Lambda spectrophotometer. NMR: Bruker AMX-600 spectrometer (1H at 600.1, 13C at 150.9 MHz), chemical shifts in δ rel. to CDCl3 (δ H 7.26, δ C 77.7) or [D6]DMSO (δ H 2.49, δ C 39.5) as internal standard. HR EI-MS: Finnigan MAT 90 instrument using EI at 70 eV.

Lichen material

M. cruenta was removed from the bark of sun-exposed branches of *Ilex cassini* and *Myrica cerifera*, collected on the shores of lakes and swamps in Florida in March 2000 (leg. et det. A. Mathey, D. Griffin).

Extraction and isolation

Approximately 200 mg of lichen material from *Melanotheca cruenta* was defatted by washing with light petroleum (b.p. 60–80 °C). The residue was then extracted with ethyl acetate yielding the crude red pigments. They were separated by preparative HPLC on a RP-18 column [solvent A: H2O/MeCN (9:1 v/v), solvent B: CH3CN; gradient: 70% A/30% B → 100% B (60 min)] to yield draculone (1), RT = 33.4 min (red solution) and haematommone (2), RT = 35.3 min (yellow solution). The two fractions were each stored in the HPLC solvent mixture overnight at 4 °C to effect crystallisation.

Haematommone (2)

Yield 0.3 mg, orange-red needles; UV/Vis: λCH3OH (nm): 205, 235, 270, 281, 310, 464; 1H NMR (600 MHz, [D6]DMSO): δ (ppm): 2.53 (s, 3H, CH3), 6.58 (d, 1H, H-8), 7.06 (s, 1H, H-4), 7.09 (d, 1H, H-6), 11.19 (s, br, 1H, OH), 11.95 (s, br, 1H, OH), 12.37 (s, br, 1H, OH), 12.96 (s, br, 1H, OH). EI-MS: m/z (%): 314 (37), 299 (100), 281 (4), 215 (8), 187 (4), 169 (3).

Draculone (1)

Yield 3 mg, dark-red needles, m.p. 242 °C (decomp.). The pink solution in acetonitrile exhibits a spectacular orange-red fluorescence. 1 dissolves in conc. H2SO4 with violet colour which turns azure-blue on addition of boric acid. UV/Vis: λCH3OH (nm, lg ε) = 210 (4.04), 232 (3.95), 276 (3.93), 306 (3.73), 512 (3.60), 546 (sh, 3.47). 1H NMR (600 MHz, [D6]DMSO, 292 K): δ (ppm): (s, 3H, CH3), 6.63 (d, 4JHH = 2.0 Hz, 1H, H-7), 7.19 (d, 4JHH = 2.0 Hz, 1H, H-5), 8.21 (s, 1H, OH), 11.47 (s, 1H, OH), 12.18 (s, 1H, OH), 13.15 (s, 1H, OH) (one of the OH signals could not be observed). 13C-NMR (151 MHz, [D6]DMSO, 292 K): δ (ppm): 32.1 (COCH3), 108.3 (C-5), 108.7 (C-7), 109.3 (C-8a), 122.4 (C-2), 164.3 (C-8), 165.1 (C-6), 184.4 (C-9), 186.5 (C-10), 200.3 (COCH3) (the missing signals could not be detected due to solubility problems). EI-MS: m/z (%): 330 (100), 315 (19), 312 (9), 302

![Fig. 1. HMBC correlations in 1 and its pertrimethylsilyl derivative 3.](image-url)
A. Mathey et al. · Draculone, a New Anthraquinone Pigment from Melanotheca cruenta

Pertrimethylsilyl derivative 3

N-Methyl-N-trimethylsilyl trifluoroacetamide (50 µl) was added to 2 mg of 1 and the resulting solution kept for 2 h at 40 °C. Then excess MSTFA was removed under reduced pressure.

\[\delta (ppm) : 0.21 \text{[s, 9H, Si(CH}_3\text{)]}, 0.23 \text{[s, 9H, Si(CH}_3\text{)]}, 0.24 \text{[s, 9H, Si(CH}_3\text{)]}, 0.32 \text{[s, 9H, Si(CH}_3\text{)]}, 0.34 \text{[s, 9H, Si(CH}_3\text{)]}, 2.47 \text{(s, 3H, COCH}_3\text{)}, 6.54 \text{(d, 1H, H-7)}, 7.19 \text{(d, 1H, H-5)}. \]

\[\delta \text{[ppm]} : 1.0 \text{[Si(CH}_3\text{)]}, 1.1 \text{[Si(CH}_3\text{)]}, 1.3 \text{[Si(CH}_3\text{)]}, 1.45 \text{[Si(CH}_3\text{)]}, 1.48 \text{[Si(CH}_3\text{)]}, 32.7 \text{(COCH}_3\text{)}, 112.3 \text{(C-5)}, 118.6 \text{(C-7)}, 121.1 \text{(C-8a)}, 122.0 \text{(C-4a)}, 125.6 \text{(C-1a)}, 135.9 \text{(C-2)}, 138.8 \text{(C-5a)}, 143.6 \text{(C-4)}, 146.8 \text{(C-3)}, 149.8 \text{(C-1)}, 157.3 \text{(C-8)}, 160.3 \text{(C-6)}, 182.4 \text{(C-9)}, 184.3 \text{(C-10)}, 202.4 \text{(COCH}_3\text{)}. \]

Acknowledgements

A. M. thanks Dr. Dana Griffin, University of Florida, for directing the field trip in Florida. This work could not have been carried out without the financial support of Professor Pierre Potier and the Centre National de la Recherche Scientifique.

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (SFB 369).

Stoker B. (1897), Dracula.
