New Caffeic Acid Esters from *Plazia daphnoides*

Mariza Hoeneisen*a, Julio Alarcón*b, Pedro Aqueveque*a, Magalis Bittner*a, Jose Becerra*a, Mario Silva*a, and Jasmin Jakupovic*c

*a Laboratorio Quimica Productos Naturales, Dpto. de Botánica, Universidad de Concepción, Concepción, Chile. Fax: +56-41-221569; E-mail: mhoeneis@udec.cl

*b Depto. Ciencias Básicas, Facultad de Ciencias, Universidad del Bío Bío, Chillán, Chile

*c Institute for Organic Chemistry, Technical University of Berlin, D-10623 Berlin 12, Germany

* Author for correspondence and reprint request

Z. Naturforsch. 58c, 39–41 (2003); received July 17/August 16, 2002

Two new 3,4 dihydroxycinnamic acid esters have been isolated from *Plazia daphnoides*. The structures were elucidated by NMR spectroscopy.

Key words: Plazia daphnoides, Asteraceae, 3,4 Dihydroxycinnamic Acid Esters

Introduction

In the course of continuing studies on plants of the tribe *Mutisieae* (Asteraceae), widely distributed in Chile, with 30 genus and 203 species (Marticorena and Quezada; 1995; Cabrera; 1977) from this tribe several characteristic groups of natural products have been isolated. Some of them in part are typical for the subtribe *Gochnatiinae*, where the *Plazia* genus has been placed (Zdero et al., 1988a). Previously, the oil of *Plazia daphnoides* was distillated and analyzed isolating phenols and volatile fatty acids. Also the aerial parts where examined isolating kolavenol, the flavanoids naringerin, sakuranetin, isokuranetin, acacetin and genkwanin, lupeyl acetate, α- and γ-curcumene, (−)-9-acetoxycapric acid, the 5-methyl coumarins lycoserone and its 1′-epimer, cyclycoserone and its dehydroderivative (Fester et al., 1958; Zdero et al., 1988b).

In a continuation of our investigation of Chilean Mutisieae (Galvez et al., 1986; Hoeneisen and Becker, 1986; Hoeneisen and Silva, 1986; Malдонado et al., 1988; Hoeneisen et al., 1993, 1997, 1999, 2000) here we report the isolation and structure elucidation of two new compounds: isobutyl-3,4-dihydroxycinnamate (1) and 2-methyl-2-butenyl-3,4-dihydroxycinnamate (2) from the aerial parts of *Plazia daphnoides*, a species which has not been subjected to a thorough phytochemical analysis.

Materials and Methods

General experimental procedures

1H-NMR were recorded at 400 MHz and 13C-NMR at 100 MHz on Bruker spectrometers, chemical shifts (ppm) are related to (CH3)4Si as internal reference.

Plant material

Aerial parts from *P. daphnoides* were collected in Tiliviri (3210 m. s. m.), Prov. Parinacota (Region, Chile). Voucher specimen (Matthei and Rodríguez 248) can be found at the botanical collection of the herbarium (CONC), Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.

Isolation and purification of isobutyl-3,4-dihydroxycinnamate (1) and 2-methyl-2-butenyl-3,4-dihydroxycinnamate (2)

Dried plant material (3.0 kg) was crushed and percolated at room temperature with MeOH, which was evaporated under vacuum, the residue (409 g) was dissolved in H2O. The solution was partitioned with n-hexane (3 × 500 ml), CH2Cl2 (3 × 500 ml) and EtOAc (3 × 500 ml). The CH2Cl2 evaporated to dryness, afforded 230.9 g of CH2Cl2 extract. This was fractionated by flash chromatography eluting with n-hexane with increasing 10% volume amounts of EtOAc and finally 100%
Fig. 1. Caffeic acid ester isolated from *P. daphnoides*.

<table>
<thead>
<tr>
<th>Carbon</th>
<th>δH</th>
<th>δC</th>
<th>Carbon</th>
<th>δH</th>
<th>δC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>127.0</td>
<td></td>
<td>2</td>
<td>115.4</td>
<td>7.09 d (2)</td>
</tr>
<tr>
<td>3</td>
<td>144.1</td>
<td></td>
<td>4</td>
<td>146.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.95 dd (2,6)</td>
<td>114.3</td>
<td>6.93 dd (2,8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.87 d (8)</td>
<td>122.5</td>
<td>6.86 d (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7.56 d (16)</td>
<td>145.6</td>
<td>7.56 d (16)</td>
<td>145.7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6.24 d (16)</td>
<td>114.9</td>
<td>6.23 d (16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>168.8</td>
<td></td>
<td>1</td>
<td>168.7</td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>3.98 d (7)</td>
<td>71.1</td>
<td>4.70 brd (7)</td>
<td>61.9</td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>2.00 tqq (7,7,7)</td>
<td>27.7</td>
<td>5.40 bst (7)</td>
<td>118.2</td>
<td></td>
</tr>
<tr>
<td>3'</td>
<td>0.97 d (7)</td>
<td>19.1</td>
<td>1.76 brs</td>
<td>139.6</td>
<td></td>
</tr>
<tr>
<td>4'</td>
<td>19.1</td>
<td></td>
<td>1.72 brs</td>
<td>27.7</td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td></td>
<td></td>
<td></td>
<td>18.0</td>
<td></td>
</tr>
</tbody>
</table>

Table I. 1H and 13C NMR data for compounds isolated from *Plazia daphnoides*. Coupling constants Hz in parenthesis.

MeOH. The residue from the fraction eluted with 20% EtOAc in CH2Cl2 (14 g) was chromatographed over Sephadex LH20 and afforded isobutyl-3,4-dihydroxycinnamate (1) and 2-methyl-2-butenyl-3,4-dihydroxycinnamate (2) (Fig. 1) by elution with acetone. They were separated by preparative TLC using CHCl3-MeOH (4:1 v/v).

Results and Discussion

The 1H NMR spectrum of 1 exhibited signals for three aromatic protons in a 2,5,6 substitution pattern, two broad hydroxyl singlets (δ 5.65 and δ 6.05), which together with two protons of a trans-doble bond (J = 16 Hz), indicated the presence of a 3,4-dihydroxy-trans-cinnamate (caffeate) moiety. Further signal for a deshielding indicated the presence of a small alkyl chain. The carbon spectrum (Table I) confirmed the presence of a dihydroxy cinnamate derivative with resonances attributable to a carbonyl group (δ 168.8), two deshielded oxygen bearing quaternary carbon. The structure of compound 2 was deduced from the NMR data, which are similar to those of 1, but showing a different signal for the methyl groups at the alkyl chain.

Acknowledgements

The authors thank the Dirección de Investigación project Nº 210.111.027-1 Universidad de Concepción.

