Introduction

Face and mouth represent locations of the body where pains are felt most commonly. Many of the difficulties in the management of acute and chronic orofacial pain conditions stem from a lack in recognition and understanding of orofacial pain mechanisms. The management of pain continues to be a major challenge for medicine (Miranda et al., 2009). In recent times there has been a constant search for alternative drugs that possess higher efficacy and safety in reducing inflammatory and neuropathic pain with a strategy to halt the transition from acute to chronic pain (Holanda-Pinto et al., 2008). Although during the last two decades notable progress has been made in the development of natural therapies, there is an urgent need to discover effective and potent analgesic agents (Yunes et al., 2005).

An increasing number of studies have demonstrated that plant-derived essential oils exhibit a variety of biological properties (De Sousa, 2011). Monoterpenes are the primary components of these essential oils, and the pharmacological effects of many medicinal herbs have been attributed to them (De Sousa, 2011). Carvacrol (5-isopropyl-2-methylphenol, CARV) is a monoterpenic phenol with substantial anticancer (Zeytinoglu et al., 2003), antioxidant (Guimarães et al., 2010), and anti-inflammatory (Botelho et al., 2009) properties. This compound is predominant in many essential oils of the family Lamiaceae, including the Origanum and Satureja species used through the ages as a source of flavour in food. Recent studies have shown CARV to be effective as an analgesic compound in various pain models (Guimarães et al., 2010) and have demonstrated the antinociceptive property of monoterpenoid compounds (like citronellal, linalool, and p-cymene) in orofacial pain models in rodents (Quintans-Júnior et al., 2010; Venâncio et al., 2011; Santana et al., 2011).

Since CARV, whose biological function has not been well studied, is the main component of the...
medicinal plants used in orofacial pain conditions (Botelho et al., 2007), we investigated the antinociceptive activity of CARV in formalin-, capsaicin-, and glutamate-induced orofacial nociception in rodents. This is the first study that has evaluated the effect of CARV using an orofacial pain approach.

Material and Methods

Chemicals

Glutamate, capsaicin, ethanol, dimethyl sulfoxide (DMSO), and carvacrol (98% purity) were purchased from Sigma (St. Louis, MO, USA). Morphine and sodium pentobarbital were obtained from União Química (Fortaleza, Brazil) and formaldehyde from Vetec (Duque de Caxias, Brazil). Capsaicin was dissolved in ethanol/DMSO/distilled water (1:1:8 v/v/v).

Animals

Male Swiss mice (25–33 g) were obtained from the Central Animal Facility of the Federal University of Sergipe (São Cristóvão, Brazil). Animals were randomly assigned to groups and maintained in plastic boxes at controlled room temperature [(21 ± 2) °C] with free access to food and water, under a 12 h/12 h light/dark cycle. All experiments were carried out between 9:00 a.m. and 2:00 p.m. in a quiet room. All nociception tests were carried out by the same visual observer. Experimental protocols were approved by the Animal Care and Use Committee (CEPA/UFS # 18/10) at the Federal University of Sergipe.

Formalin-, capsaicin-, and glutamate-induced orofacial nociception

These tests were done as previously described by Quintans-Júnior et al. (2010) and Lucarini et al. (2006). Orofacial nociception was induced in mice by subcutaneous (s.c.) injection of formalin (20 µl, 2%), capsaicin (20 µl, 2.5 µg), or glutamate (40 µl, 25 µM) into the right upper lip (perinasal area). To assess the effects of the test drugs, groups of mice (n = 8 per group) were pretreated systemically with vehicle (0.3% cremophor in distilled water, the solvent for CARV) or CARV [(25, 50, and 100 mg/kg body weight (BW), intraperitoneal (i.p.))] 0.5 h before the local injection of the nociceptive solution. Morphine (MOR, 5 mg/kg BW, i.p.), administered 0.5 h before the algogen, was included as positive control. Nociception was quantified by measuring the time (s) that the animals spent face-rubbing the injected area with their fore- or hindpaws.

Pentobarbital-induced hypnosis

Pentobarbital-induced hypnosis was performed as described by Melo et al. (2010). A hypnotic dose of 50 mg/kg BW sodium pentobarbital was injected i.p. 30 min after pretreatment with vehicle or CARV (50, 100, and 200 mg/kg BW, i.p.). Then the latency (interval between injection of sodium pentobarbital and loss of the righting reflex) and duration of sleeping time (interval between loss and recovery of the righting reflex) were determined.

Statistical analysis

Data were evaluated by one-way analysis of variance (ANOVA) followed by Tukey’s test. In all cases, differences were considered significant if p < 0.05. All statistical analyses were done using Graph Pad Prism 3.02 (Graph Pad Prism Software Inc., San Diego, CA, USA).

Results and Discussion

In the present study, we showed that acute treatment with CARV, a monoterpene phenol, plays a protective role in reducing behavioural pain when evaluated for formalin-, capsaicin-, and glutamate-induced orofacial nociception in mice. The orofacial formalin test has a singular advantage among all single-parameter methods, the simplicity of the scoring technique. This simplicity, coupled to the fact that a 2% content of formalin was used, makes the model a useful tool for the study of nociceptive processes in the trigeminal region (Raboisson and Dallel, 2004). The use of formalin in the orofacial region (right upper lip) induces a biphasic nociceptive response (Lucarini et al., 2006). The first phase (0–5 min) corresponds to the direct stimulation of nociceptors, predominantly C fibers, with the participation of substance P, bradykinin, and glutamate (Shibata et al., 1989). According to Hunskaar et al. (1985), this phase is only sensitive to analgesics acting on the central nervous system (CNS). The first phase is followed by an interphase, which lasts about 15 min and results from active inhibition of the excitability of nocicep-
tors. The second phase, which starts 21 min after the formalin injection, is determined by two components: central sensitization of nociceptors and second-order neurons; and the action of inflammatory mediators such as histamine, serotonin (5-HT), bradykinin, and prostaglandins released as a result of tissue injury (Henry et al., 1999). This second phase of nociception could be inhibited by both nonsteroidal anti-inflammatory drugs (NSAID) and opioid drugs.

Our results showed that pretreatment with CARV (at all doses tested) and morphine produced antinociception in the orofacial formalin test, evidenced by a statistically significant difference \(p < 0.05 \) or \(p < 0.001 \) for the time that the animal remained rubbing the orofacial region in both phases of testing (Figs. 1A and B). The results of the orofacial formalin nociception test differ from those obtained in our previous study that did not reveal a robust antinociceptive effect for CARV in the formalin paw test in the first phase (Guimarães et al., 2010). Apparently, CARV possesses a higher effectiveness in reducing neurogenic orofacial pain, even when administered systemically.

The pretreatment with CARV caused a dose-dependent decrease of the nociceptive behaviour induced by administration of capsaicin at all doses (Fig. 2A). The inhibitory effect observed with CARV on the capsaicin-induced orofacial nociceptive behaviour may be a result of its possible inhibition of substance P release or due to a direct blocking action of its receptor neurokinin-1 (NK-1). Additionally, the capsaicin-sensitive transient receptor potential vanilloid 1 (TRPV1) plays an important role in pain transduction and is one of the \(\text{Ca}^{2+} \) influx channels involved in cell migration (Waning et al., 2007).

When injected in the right upper lip (perinasal area), glutamate elicited a noxious stimulus characterized by a behavioural response (licking or rubbing of the orofacial region) (Quintans-Júnior et al., 2010). Glutamate is present in both central and peripheral terminals of trigeminal

![Fig. 1. Effects of carvacrol (CARV) or morphine (MOR) on the formalin-induced orofacial nociception in mice. Vehicle (control), CARV (25, 50, and 100 mg/kg BW), or MOR (5 mg/kg BW) were administered i.p. 0.5 h before formalin injection. (A) First phase (0–5 min) and (B) second phase (15–40 min). Each column represents means ± S.E.M. \((n = 8\) per group). \(^a p < 0.05\) and \(^b p < 0.001\) vs. control group; \(^c p < 0.01\) and \(^d p < 0.001\) compared to CARV 25 mg/kg BW and CARV 50 mg/kg BW group alone, respectively (ANOVA followed by Tukey’s test).]
Taken together, these data lead to the hypothesis that carvacrol, a monoterpene phenol, has a protective role in orofacial nociception in rodents and a hypnotic effect at higher doses; however, further studies need to be performed to determine the precise mechanism of action.

Acknowledgements

This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq/Brazil (grant number 305783/2010-6) and the Fundação de Apoio à Pesquisa e à Inovação Tecnológica do Estado de Sergipe/FAPITEC-SE (grant number 019.203.00860/2009–6).

