Terpenes from Artemisia herba-alba
Abou El-Hamad H. Mohamed*, Abeer M. Esmail, and Adila M. El-Saade

Department of Chemistry, Aswan-Faculty of Science, Aswan University, Aswan, Egypt. Fax: +020973480450. E-mail: abouhassan68@yahoo.com

* Author for correspondence and reprint requests

Chromatographic investigation of the methylene chloride/methanol extract of the aerial parts of Artemisia herba-alba afforded a new monoterpene dimer, in addition to a known monoterpene and three known sesquiterpene lactones. The structures of the compounds were determined by comprehensive NMR analyses, including DEPT, COSY, HMQC, HMBC, and HRMS.

Key words: Artemisia herba-alba, Sesquiterpenes, Monoterpene

Introduction

The large genus Artemisia, family Asteraceae in the tribe Anthemideae, has been the subject of numerous chemical and biological studies (Saadali et al., 2001). Artemisia species, widespread throughout the world, are important medicinal plants, which have been used for the treatment of diseases such as malaria, hepatitis, cancer, tracheitis, pharyngitis, pneumonia, inflammation, and infections by fungi, bacteria, and viruses (Kim et al., 2002; Zheng et al., 1996). Several species of Artemisia are important in folk medicine, thus, A. herba-alba has been used as an antihelminthic by local populations in Morocco (Boriky et al., 1996). A. mongolica has been proven to cure inflammations and colds in Northwest China (Hu et al., 1996). A. pontica is used as a sedative and appetizer in Bulgarian folk medicine (Todorova et al., 1996). Of approximately 200 species growing in China, more than 50 have been used in traditional Chinese medicinal practice, for the treatment of gynaecopathy, amenorrhea, bruise, and rheumatic disease (Tan et al., 1999; Kwak et al., 1997). Furthermore, A. vulgaris is used to flavour tea and rice dishes in Asia and as a culinary herb for poultry and pork in western cultures. In oriental medicine, it has been employed as an analgesic agent, in conjunction with acupuncture therapy, and has been implemented in the treatment of painful menstruation and in the induction of labour or miscarriage (Lee et al., 1998). From extensive studies, the genus Artemisia has been found to be a rich source of biologically active compounds such as monoterpenes, sesquiterpenes, triterpenes, and flavones (Kim et al., 2002; Tan et al., 1999; Tang et al., 2000; Mohamed et al., 2010). This paper describes the isolation, identification, and structure elucidation of a new monoterpene dimer, 1, two germacranolides, 2 and 3 (Marco 1989; Marco et al., 1994; Pathak and Khanna, 1987), an eudesmanolide, 4 (Ahmed et al., 1990), and a monoterpene, 5 (Marco et al., 1991), from the aerial parts of A. herba-alba.

Results and Discussion

Repetitive chromatographic steps in the fractionation of the methylene chloride/methanol (1:1) extract of the air-dried aerial parts of A. herba-alba afforded the new compound 1, in addition to the known sesquiterpene lactones 2, 3, and 4 and the monoterpene 5. Compound 1 was obtained as yellowish oil and showed a molecular ion peak [M]+ at m/z 360, in accord with the molecular formula C21H30O5, in the EI mass spectrum. Fragment ions at m/z 342 and 327 were due to the elimination of a water molecule and a methyl group, respectively. An interesting peak appearing at m/z 300 (12%) was due to the elimination of a CH2COOH molecule from the [M]+ ion. The strong peak at m/z 135 [C9H11O]+ (33%) resulted from the elimination of C10H15O2 from the [M – CH2COOH]+ ion. This ion could be formed by cleavage of the C9-C10 bond. The fragment ion at m/z 105 (40%) might be produced by elimination of the two methyl groups from the ion 135, while the fragment ion at m/z 91 could be produced by elimination of a CH3 group from the ion 105. Exact mass determination of the ion at m/z 360...
established the elemental composition C_{21}H_{28}O_{5} (experimental 360.1937, calcd. 360.1902).

The 1H NMR spectrum showed seven singlet signals at δ_{H} 6.30 ppm, 1.10 ppm, 1.28 ppm, 5.08 ppm, 1.22 ppm, 1.12 ppm, and 3.70 ppm assigned to H-2', H-7', H-8', H-5, H-11, H-12, and the methyl ester, respectively. Furthermore, it revealed the presence of a doublet of doublets at δ_{H} 2.88 ppm ($J = 11.9, 4.3$ Hz, H-4'), correlated with a doublet of doublets at δ_{H} 2.52 ppm (dd, $J = 4.3, 17.0$ Hz, H-5'a) and 2.69 ppm (dd, $J = 11.9, 17.0$ Hz, H-5'b) in the 1H-1H-COSY spectrum. It also showed a doublet signal at δ_{H} 4.56 ppm (d, $J = 4.55$ Hz, H-7), coupled with a carbon atom at δ_{C} 77.74 ppm (C-7) in the HMQC spectrum. The latter proton showed a correlation with a multiplet signal at δ_{H} 2.33 ppm (m, H-8) in the 1H-1H-COSY spectrum. Moreover, it showed a multiplet signal at δ_{H} 2.14 ppm integrated for three protons (H-3a, H-9a, H-10a), and it showed a clear correlation in the 1H-1H-COSY spectrum with a multiplet signal at δ_{H} 2.38 ppm integrated for three protons (H-3b, H-9b, H-10b). The 13C NMR and DEPT experiments of 1 displayed twenty one carbon signals: three carbonyl carbon atoms at δ_{C} 177.0 ppm (C-2), 197.27 ppm (C-6'), and 172.62 ppm (C-9'), five methyl carbon atoms at δ_{C} 28.27 ppm (C-11), 27.40 ppm (C-12), 22.91 ppm (C-7'), 28.93 ppm (C-8'), and 51.69 ppm (COOMe), four methylene carbon atoms at δ_{C} 34.08 ppm (C-3), 36.78 ppm (C-5'), 26.98 ppm (C-9), and 33.76 ppm (C-10), five methine carbon atoms at δ_{C} 154.37 ppm (C-2'), 49.40 ppm (C-4'), 133.49 ppm (C-5), 77.74 ppm (C-7), and 48.96 ppm (C-8), and four quaternary carbon atoms at δ_{C} 136.0 ppm (C-1'), 35.15 ppm (C-3'), 134.75 ppm (C-4), and 35.46 ppm (C-6). Confirmation of the structure of compound 1 was given by the HMBC analysis; the most important correlations were observed between: H-2' (δ_{H} 6.30 ppm, s) and C-4' (δ_{C} 49.40 ppm), C-6' (δ_{C} 197.27 ppm), C-10 (δ_{C} 33.76 ppm); H-4' (δ_{H} 2.88 ppm, dd)
and C-3' (δC 35.15 ppm), C-5' (δC 36.78 ppm), C-6' (δC 197.27 ppm), C-7' (δC 22.91 ppm), C-8' (δC 28.93 ppm), C-9' (δC 172.62 ppm); H-5' (δH 2.52 ppm, dd; 2.69 ppm, dd) and C-3' (δC 35.15 ppm), C-4' (δC 49.40 ppm), C-6' (δC 197.27 ppm); H-3 (δH 2.14 ppm, m; 2.38 ppm, m) and C-2 (δC 177.0 ppm); H-5 (δH 5.08 ppm, s) and C-6 (δC 35.46 ppm), C-7 (δC 77.74 ppm), C-8 (δC 48.96 ppm), C-9 (δC 26.98 ppm); H-7 (δH 4.56 ppm, d) and C-2 (δC 177.0 ppm), C-4 (δC 134.75 ppm), C-8 (δC 48.96 ppm), H-8 (δH 2.33 ppm, m) and C-6 (δC 35.46 ppm), H-9 (δH 2.14 ppm, m; 2.38 ppm, m), H-10 (δH 2.14 ppm, m; 2.38 ppm, m) and C-4 (δC 134.75 ppm), C-1' (δC 136.0 ppm); H-11 (δH 1.22 ppm), H-12 (δH 1.12 ppm) and C-5 (δC 133.49 ppm), C-7' (δH 1.10 ppm), H-8' (δH 1.28 ppm), and C-2' (δC 154.37 ppm), C-3' (δC 35.15 ppm), C-4' (δC 49.40 ppm). On the basis of these results, compound 1 was identified as a new monoterpene dimer, which was given the name herbalbin, a new natural product (Fig. 1).

