
Cent. Eur. J. Comp. Sci. • 4(2) • 2014 • 67-85
DOI: 10.2478/s13537-014-0204-7

Central European Journal of Computer Science

Building a 256-bit hash function on a stronger MD
variant

Research Article

Harshvardhan Tiwari∗, Krishna Asawa

Jaypee Institute of Information Technology, India

Received 03 December 2012; accepted 08 April 2014

Abstract: Cryptographic hash functions are important cryptographic techniques and are used widely in many cryptographic
applications and protocols. All the MD4 design based hash functions such as MD5, SHA-1, RIPEMD-160 and
FORK-256 are built on Merkle-Damgård iterative method. Recent differential and generic attacks against these
popular hash functions have shown weaknesses of both specific hash functions and their underlying Merkle-
Damgård construction. In this paper we propose a hash function follows design principle of NewFORK-256
and based on HAIFA construction. Its compression function takes three inputs and generates a single output
of 256-bit length. An extra input to a compression function is a 64-bit counter (number of bits hashed so far).
HAIFA construction shows strong resistance against major generic and other cryptanalytic attacks. The security
of proposed hash function against generic attacks, differential attack, birthday attack and statistical attack was
analyzed in detail. It is shown that the proposed hash function has high sensitivity to an input message and is
secure against different cryptanalytic attacks.

Keywords: cryptographic hash function • MD4 • SHA-1 • FORK-256 • Merkle-Damgård construction
© Versita sp. z o.o.

1. Introduction
The rapid growth of new digital technologies increased the demand of information security in communication. Crypto-graphic hash functions are being widely used in different security applications and protocols such as digital signature,message authentication code, SSL, TLS, etc. for ensuring the integrity and authenticity of information. Cryptographichash functions are functions that compress an input message of arbitrary length to an output with short fixed length,the hash value. Collision resistance, preimage resistance and second preimage resistance are three important securityproperties of a hash function [1]. Collision resistance means it is computationally infeasible to find two distinct inputs(M,M ′) with H(M) = H(M ′). It is practically impossible to find the preimage M of H(M) when H(M) is given, thisis referred to as preimage resistance. Finding M ′ 6= M with H(M) = H(M ′), when M and H(M) are given, shouldalso be infeasible. This property is called second preimage resistance. An ideal hash function that generates an n-bithash value requires evaluating about 2n/2 messages to find any pair of messages having the same hash value. Also it
∗ E-mail: tiwari.harshvardhan@gmail.com

67

Building a 256-bit hash function on a stronger MD variant

requires 2n hash computations for finding preimage and second preimage. Cryptographic hash functions are classifiedinto unkeyed hash functions and keyed hash functions. Unkeyed hash functions, also known as modification detectioncodes (MDCs), use message as a single input whereas keyed hash functions, also known as message authenticationcodes (MACs), can be viewed as hash functions which take two functionally distinct inputs, a message of arbitrary finitelength and a fixed length secret key. In this paper, the unkeyed hash functions are discussed and they are simply calledhash functions. There are three main categories of hash functions, namely hash functions based on block cipher, hashfunctions based on modular algorithm and dedicated hash functions [2]. Other approaches for building hash functionsare chaos-based hash functions [3–5] and cellular automata-based hash functions [6]. Most widely used hash functionsare MD4 [7] design based dedicated hash functions. These hash functions use traditional Merkle-Damgård iterativestructure [8, 9]. The input message M is padded to obtain a message of length multiple m-bits and divided into t blocksof equal length. The hash function H can then be described as follows:
h0 = IV , hi = f (hi−1,Mi), 1 ≤ i ≤ t, H(M) = ht , (1)

where f is a collision resistant compression function, hi is the ith chaining variable and IV is the initial value ofthe chaining variable. Recent attacks presented by many researchers have exposed flaws in both Merkle-Damgårdconstruction and specific hash functions. Some attacks against Merkle-Damgård construction are fixed point [10], multi-collision attack [11], second preimage attack [12], herding attack [13]. Due to structural weaknesses, researchers haveproposed several variants of Merkle-Damgård construction [14–16]. In this paper we proposed a hash function HNF-256that takes an input message of arbitrary length and converts it into a 256-bit hash value. The compression functionof proposed HNF-256 uses HAIFA iterative mode. Biham and Dunkelman [14] introduced HAIFA, the HAsh IterativeFrAmework. HAIFA is a collection of slight tweaks to the original Merkle-Damgård construction. HAIFA constructionis obtained by adding a bit counter and salt to the compression function of Merkle-Damgård construction. The salt is arandomly chosen parameter, which shall be fixed just before hashing. It is an optional input. The counter represents thesum of the number of message bits that have been hashed so far and the number of message bits in the current block tobe hashed. Its padding includes digest length. The iterative structure of this design provides good resistance againstgeneric and other cryptanalytic attacks. The rest of this paper is organized as follows; Section 2 presents the relatedwork. The proposed hash function is presented in Section 3. Section 4 contains the security analysis of HNF-256. Theperformance analysis of hash function is presented in Section 5. Section 6 contains the source code for hash functionand the paper is concluded in Section 7.
2. Related work
A number of hash functions have been proposed, most of them have been influenced by the design of the MD4 hashfunction. The MD4 hash function was proposed by Rivest in 1991 [7]. The algorithm produces hash values of 128-bitsin length. It is a very fast hash function optimized for 32-bit architectures. Extended version of MD4 generates 256-bithash value. MD4 pads a message by appending single bit 1 followed by variable number of 0’s until the length of themessage is 448 modulo 512 and then the 64-bit length of the message is appended as two 32-bit words. Other MD4variants also use the same padding rule. The compression function of MD4 takes as input 128-bit chaining variable anda 512-bit message block and maps this to a new chaining variable. Each run of a compression function consists of threerounds and 48 sequential steps (each round consists of 16 steps), where each step is used to update the value of oneof the four registers. Every round of MD4 compression function uses a different non-linear boolean function. den Boerand Bosselaers [17] published the first attack on MD4. The attack was on the last two rounds of MD4. They showedthat if the first round is omitted, then collision in MD4 can be found easily. Merkle showed an attack on the first tworounds of MD4, but this work was never published. Dobbertin [18] showed that MD4 is not a collision resistant hashfunction. He also showed that the first two rounds of MD4 are not one-way.MD5 was also designed by Rivest [19] as a strengthen version of MD4. It generates 128-bit hash value. Padding,parsing and processing of MD5 is almost similar to MD4, but some changes have been made to MD4. Changes includethe addition of one extra round along with a new round function and redefined second round function. The compressionfunction uses four rounds, each round has sixteen steps. Four non-linear boolean functions and 64 different additiveconstants are used in MD5. Each message, like the MD4, after it has been appended by padding bits, processed inblocks of 512 bits. den Boer and Bosselaers [20] found pseudo-collision for MD5. Dobbertin [21] published an attack

68

Harshvardhan Tiwari, Krishna Asawa

that found a collision in MD5. At Crypto’04, Wang et al. [22] announced collision in MD5 as well as collisions in otherhash functions such as MD4, RIPEMD and HAVAL-128.Another MD4 design based hash functions are from SHA-family. The original design of the hash function SHA-0 wasdesigned by NSA and published by NIST as FIPS PUB 1801.Two years later, SHA-0 was withdrawn due to a flawfound in it and replaced by SHA-1, published by NIST as FIPS PUB 180-12. Both SHA-0 and SHA-1 produce ahash value of 160 bits. The only difference between these two versions is that, SHA-1 uses a single bitwise rotationin its message schedule. Padding is done in the same way, then a 512-bit message block is split into sixteen 32-bitwords and expands it into eighty 32-bit words using a message expansion relation. Each block is processed in 4 roundsconsisting of 20 steps each. These four rounds are structurally similar to one another with the only difference that eachround uses a different boolean function and one of four different additive constants. A complete round of SHA-0/1 ismade up of 80 steps. NIST published SHA-2 family as FIPS PUB 180-23.SHA-2 family consists of four hash functions,SHA-224, SHA-256, SHA-384, and SHA-512. SHA-224 and SHA-384 are the truncated versions of SHA-256 andSHA-512 respectively.The first result of cryptanalysis of SHA-0 was presented at CRYPTO’98. Chabaud and Joux [23] found collision withcomplexity 261. This was a differential attack and faster than generic birthday paradox attack. Biham and Chen [24]found two near-collisions of the full compression function of SHA-0. Biham et al. [25] presented collision for the fullSHA-0 and reduced SHA-1 algorithms. Wang et al. [26] showed collision in SHA-0 in 239 operations. Rijmen andOswald [27] published an attack on a reduced version of SHA-1. Wang et al. [28] presented collisions in full SHA-1with less than 269 hash operations.The RIPEMD hash function was designed in the framework of the European Race Integrity Primitives Evaluation (RIPE)project. The design of RIPEMD is based on MD4; its compression function consists essentially of two parallel schemesof the MD4 compression function. It generates 128-bit message digest. Later two strengthen versions of RIPEMD arereleased, RIPEMD-128 and RIPEMD-160. RIPEMD-128 also produces 128-bit message digest as its predecessor.The RIPEMD-160 hash function [29] processes 512-bit input message blocks and produces a 160-bit hash value. BothRIPEMD-128 and RIPEMD -160 are extended to RIPEMD-256 and RIPEMD-320 respectively.FORK family hash functions can be viewed as the further extension of RIPEMD family. FORK-256 [30] was the firsthash function in FORK family, introduced in the first NIST hash workshop and at FSE 2006. NewFORK-256 [31] hashfunction was introduced in 2007. In this new version they modified step operations, removed some additions and XORsand changed non-linear operations of FORK-256. It includes bijective function in step operation. The compressionfunction of FORK-256 and NewFORK-256 consists of four independent branches. Each one of these branches takesin the 256-bit chaining value and a 512-bit message block to produce a 256-bit result. These four branch results arecombined with the chaining value to produce the final compression function result. Both algorithms are entirely builton shift, XOR, and addition operations on 32-bit words. The four branches are structurally equivalent, but differ inscheduling of the message words and round constants. Each branch is computed in eight steps. Each step utilizes twomessage words and two round constants. Matusiewicz et al. [32] attacked FORK-256 by using the fact that the functionsf and g in the step operation were not bijective. They used micro-collisions to find collisions of 2-branch FORK-256and collisions of full FORK-256 with complexity of 2126.6. Mendel et al. [33] published the collision-finding attack on2-branch FORK-256 using micro collisions and raised possibility of its expansion. FORK-256 was optimized by Danda[34]. In [35] a collision attack against NewFORK-256 using meet-in-the-middle technique is presented. For this he useda method for finding messages that hash into a significantly smaller subset of possible hash values. The complexity ofthis collision attack is 2112.9. This attack is also applicable for FORK-256.In 2007 NIST introduced a public competition, similar to the AES contest, for new cryptographic hash algorithms [36].The intent of the competition is to identify modern secure hash functions and to define the new SHA-3 family. 56algorithms were submitted, of which NIST accepted 51 for the first round of evaluations. In 2009, out of 51 candidates,14 candidates were selected for the second round of the competition. After the second round of evaluations, the list ofcandidates was reduced to 5 for the final round evaluation. These five candidates are Blake, Groestl, Keccak, JH, Skein.
1 NIST, Secure hash standard (SHS), Federal Information Processing Standards 180, 19932 NIST, Secure hash standard (SHS), Federal Information Processing Standards 180-1, 19953 NIST, Secure hash standard (SHS), Federal Information Processing Standards 180-2, 2002

69

Building a 256-bit hash function on a stronger MD variant

Figure 1. Compression function consists of three parallel branches, each one processing the set of message words in different order.

Table 1. Basic notations.

Notation Description
x � y (x + y) mod 232
x <<< y Circular left shift of 32-bit word x by y bits
x ⊕ y Bitwise exclusive-or (XOR) between x and y(
α (s)
j , β(s)

j

) 32-bit constant in step s of branch j(
a(s)
j , b

(s)
j

) 32-bit message word in step s of branch j
X 64-bit counter value

In the last quarter of 2012, NIST announced Keccak as the winner of SHA-3 competition4.
3. Description of proposed hash function HNF-256
In this section we describe details of the proposed hash function HNF-256. In the proposal of HNF-256, it is aimed toconstruct a hash function which satisfies all the essential properties of hash function. To achieve this, HAIFA is chosenas the construction method. HNF-256 is entirely built on shift, exclusive-or (XOR), and addition operations on 32-bitwords. HNF-256 uses parallel branch structure like FORK-256 and NewFORK-256. FORK-256 and NewFORK-256use four branches. HNF-256 consists of three branches. By reducing one redundant computation of branches used incompression function we make it more efficient than its parent algorithms. Since branch 2 is used here in left as well
4 NIST, Cryptographic Hash Algorithm Competition, http://www.nist.gov/hash-competition

70

Harshvardhan Tiwari, Krishna Asawa

Table 2. Initialization vector.

CV0= 0x6A09E667 CV1= 0xBB67AE85
CV2= 0x3C6EF372 CV3= 0xA54FF53A
CV4= 0x510E527F CV5= 0x9B05688C
CV6= 0x1F83D9AB CV7= 0x5BE0CD19

right step structure, so the reduction in branch does not affect over all security of the compression function. Each one ofthese branches takes in the 256-bit (8-word) chaining value, 64-bit (2-word) counter and a 512-bit (16-word) messageblock to produce a 256-bit result. These three branch results are combined with the chaining value to produce the finalhash result. Figure 1 illustrates the branch structure. The basic notations used in HNF-256 are shown in Table 1.FORK and NewFORK-256 are based on Merkle-Damgård construction method. Both are vulnerable to generic attacks.We are using HAIFA construction as a mode of operation to build HNF-256 that provides strong resistance to genericattacks. HAIFA construction assures strong platform to iterate the compression function. It is difficult to find fixed points[10] for compression function when it is iterated through HAIFA construction because compression function includes anadditional random input counter to compress the message to hash value.Pre-processing stage contains three steps: message padding, message parsing and initialization of eight chainingvariables. Padding procedure of the algorithm is different from other FORK-family based hash functions. Padding ofHNF-256 also includes digest length along with message length. Due to inclusion of digest length and message lengthin the padding rule it is difficult to mount length extension attack on HNF-256.The purpose of the message padding is to make the total length of a padded message a multiple of 512 because themessage block length of the compression function is 512-bit. The message is padded by appending a single bit 1 next tothe least significant bit of the message, followed by zero or more bits 0’s until the length of the message is 447 modulo512, and then appends to the message the digest length and message length. Among 65-bits, first bit is set to 1 forrepresenting the 256-bit digest length and other 64-bits represents the length of original message. Padded message isthen parsed into 512-bit blocks. Each 512-bit block is a concatenation of sixteen 32-bit words.The 256-bit chaining variables are used to hold intermediate and final results of the hash function. There are eightchaining variables. The initial values of these chaining variables are exactly the same as values of the eight initialvariables used in NewFORK-256 [31]. Hexadecimal values of these initial chaining variables are shown in Table 2.The counter represents the sum of the number of message bits that have been hashed so far and the number of messagebits in the current block to be hashed. HAIFA makes the compression of each block a function of the counter. Thecounter input adds an extra security layer to the hash function against fixed point attacks. With the inclusion of thecounter as an input for each message, the attacker is forced to work harder to find a fixed point. The following exampleillustrates how the counter value for each message block in the hash function is determined: suppose we have a messagewith 1021 bits. After padding, this will be broken into 3 blocks of 512, 509 and 0 message bits. The term message bitsis important because in the second and third blocks there will be some padding bits, but since we are only consideringmessage bits, we do not consider these. Thus, the counter value for the first block is 512; for the second block it is512+509 = 1021. For the third the counter value is set to 0 because we consider only message bits, while here thirdblock is containing only padding bits. In the description 64-bit (2-word) counter is represented as X = [X0, X1], eachword is of 32-bit length. Values of these two 32-bit words depend upon the number of message bits in finally paddedmessage.The three branches are structurally equivalent, but differ in scheduling of the message words and round constants.Each branch is computed in eight steps, 0 ≤ s ≤ 7. Each step utilizes two message words and two round constants.Hash functions either use message permutation or message expansion. It is easy to establish attack on hash functionthat uses message expansion methods. Also same message ordering in different branches are susceptible to attacks forexample, RIPEMD, which consists of two branches and follows the same message ordering in both branches, was fullyattacked. On the other hand, in case of RIPEMD-160, there is no attack result because RIPEMD-160 has differentmessage-ordering in branches. So we have used different message ordering in different branches of HNF-256. Messageordering used in three branches is similar to that of message ordering used in first three branches of NewFORK-256.HNF-256 can be implemented efficiently because message ordering is simpler than the message expansion such that
71

Building a 256-bit hash function on a stronger MD variant

Table 3. Message word ordering.

Step Branch 1 Branch 2 Branch 3S a(s)1 b(s)1 a(s)2 b(s)2 a(s)3 b(s)30 M[0] M[1] M[14] M[15] M[7] M[6]1 M[2] M[3] M[11] M[9] M[10] M[14]2 M[4] M[5] M[8] M[10] M[13] M[2]3 M[6] M[7] M[3] M[4] M[9] M[12]4 M[8] M[9] M[2] M[13] M[11] M[4]5 M[10] M[11] M[0] M[5] M[15] M[8]6 M[12] M[13] M[6] M[7] M[5] M[0]7 M[14] M[15] M[12] M[1] M[1] M[3]

Figure 2. Step function.

of SHA-0/1/2. The scheduling of the message block words M [O . . . 15] in each branch is given in Table 3. We use leftmessage word a(s)
j and right message word b(s)

j in step s of j th branch (see Figure 2).Each branch uses sixteen different constants represent the first thirty-two bits of the fractional parts of the cube rootsof the first sixteen prime numbers. These constant values are similar to the constants used in NewFORK-256. By usingconstants we achieve the goal to disturb the attacker who tries to find a good differential characteristic with a relativelyhigh probability. The round constants δ [0 · · · 15] are given in Table 4 and their schedule in Table 5 α (s)
j represents leftconstant and β(s)

j represents the right constant.HNF-256 uses two simple 32-bit functions f and g, which output one word with one input word. Almost all MD4design based dedicated hash functions use boolean functions which output one word with three words at least. The
72

Harshvardhan Tiwari, Krishna Asawa

Table 4. Round constants.

δ [0] = 0x428A2F98 δ [1] = 0x71374491
δ [2] = 0xB5C0FBCF δ [3] = 0xE9B5DBA5
δ [4] = 0x3956C25B δ [5] = 0x59F111F1
δ [6] = 0x923F82A4 δ [7] = 0xAB1C5ED5
δ [8] = 0xD807AA98 δ [9] = 0x12835B01
δ [10] = 0x243185BE δ [11] = 0x550C7DC3
δ [12] = 0x72BE5D74 δ [13] = 0x80DEB1E
δ [14] = 0x9BDC06A7 δ [15] = 0xC19BF174

Table 5. Constant ordering.

s α (s)1 β(s)1 α (s)2 β(s)2 α (s)3 β(s)30 δ [0] δ [1] δ [15] δ [14] δ [1] δ [0]1 δ [2] δ [3] δ [13] δ [12] δ [3] δ [2]2 δ [4] δ [5] δ [11] δ [10] δ [5] δ [4]3 δ [6] δ [7] δ [9] δ [8] δ [7] δ [6]4 δ [8] δ [9] δ [7] δ [6] δ [9] δ [8]5 δ [10] δ [11] δ [5] δ [4] δ [11] δ [10]6 δ [12] δ [13] δ [3] δ [2] δ [13] δ [12]7 δ [14] δ [15] δ [1] δ [0] δ [15] δ [14]

boolean functions can make it easy to control the output one word by adjusting the input several words. The attacks onMD-family, SHA-family and HAVAL are based on this weakness of boolean functions. Additionally, the output words off and g functions propagate high diffusion to chaining variables. They update other chaining variables whereas in MDor SHA design based output words of boolean functions are used to update only one chaining variable. Functions f andg are used in MNF-256 are same as that of used in NewFORK-256. 32-bit functions f and g, are defined as:
f (x) = x ⊕ ((x <<< 15)⊕ (x <<< 27)),
g(x) = x ⊕ ((x <<<< 7)� (x <<< 25)).

Let CVj [0 · · · 7] be the result of the compression function iteration i and the Initialization Vector given in Table 2. Eachbranch j processes eight input words to eight output words R (8)
j , 0 ≤ t ≤ 7. R (8)

j is the output of branch. Figure 2illustrates the step function. For 0 ≤ s ≤ 7:

73

Building a 256-bit hash function on a stronger MD variant

t1 = f
(
R (s)
j [0]� a(s)

j

)
,

t2 = g
(
R (s)
j [0]� a(s)

j � α
(s)
j

)
,

t3 = g
(
R (s)
j [4]� b(s)

j

)
,

t4 = f
(
R (s)
j [4]� b(s)

j � β
(s)
j

)
,

R (s+1)
j [0] = R (s)

j [7]⊕ (t4 <<< 8)⊕ X0,
R (s+1)
j [1] = R (s)

j [0]� a(s)
j � α

(s)
j ⊕ X1,

R (s+1)
j [2] = R

(s)
j [1]� t1 ⊕ X0, (2)

R (s+1)
j [3] = (R (s)

j [2]� (t1 <<< 13))⊕ t2 ⊕ X1,
R (s+1)
j [4] = R (s)

j [3]⊕ (t2 <<< 17)⊕ X0,
R (s+1)
j [5] = R (s)

j [4]� b(s)
j � β

(s)
j ⊕ X1,

R (s+1)
j [6] = R (s)

j [5]� t3 ⊕ X0,
R (s+1)
j [7] = (R (s)

j [6]� (t3 <<< 3))⊕ t4 ⊕ X1.
The final result of the compression function for each word 0 ≤ t ≤ 7 is:

CVi+1[t] = CVi[t]� ((R (8)1 [t]� R (8)2 [t])⊕ (R (8)2 [t]� R (8)3 [t])) .
If i is the final iteration, CVi+1 is the final hash value.
4. Security analysis
In this section we have discussed the strength of the hash function against known attacks such as first preimage attacks,second preimage attacks, collision attacks, length extension attack and multicollision attack. The preimage attackconsists of finding a message which hashes to a given hash value. Resistance against preimage attack can be gained byconstructing oneway structure. Using oneway functions and one way transformations or mixing them is one of the mostcommon methods in design of hashing function. Since we have a noninvertible function in each step so as a result eachbranch is noninvertible. Due to the complexity cost, using meet in the middle technique is also unlikely for preimageattack on HNF-256. This is because, if we can bypass the operations after the branches in reverse mode to accessto their output, finding their preimage is not possible due to its complexity. Existing functions within the structurestrengthens MNF-256 against preimage attack. There is no method substantially better than brute force search to findthe preimage. Thus, brute force search will require about 2256 efforts. A second preimage resistance attack is when anattacker is given a message and tries to find another message, where both messages hash to the same value. There is noany scenario concerning preimage attack for such parallel structures like HNF-256. So there does not exist any secondpreimage attack with complexity lower than 2256. The difficulty of producing two distinct messages having the same hashvalue is of the order of 2128 operations. No collision finding attack is identified against HNF-256 more effective thanthe birthday attack. There are a few attacks applicable to different spectrum of hash functions. Let us try to analyzethe resistance of HNF-256 to these attacks.
4.1. Length extension attack
Most of the generic attacks in some way or other use internal collisions. A lot of hash functions that have an iterativestructure suffer from the length extension property. For a function that has this property, once the attacker has onecollision, he can easily build many other collisions. For example, if the messages M and M ′ collide then for any m the

74

Harshvardhan Tiwari, Krishna Asawa

messages M||m and M ′||m also collide. To overcome this problem, proposed hash design is strengthened by encodingthe length of the message and length of the digest into the few last blocks. HNF-256 has strong resistance against thelength extension property, because it requires internal collisions to be found in the first place. This way, the first step,
i.e. finding at least one collision with strong padding rule, of the length extension attack requires at least 2256 efforts.Hence the proposal is immune to length extension attack.
4.2. Multicollision attack
The multicollision attack was proposed by Joux. Multicollision set consists of messages that all hash to the same value.The idea is to build collisions one after another, which leads to set of 2k colliding messages after only k trials of thecollision search. If a hash function has an iterative structure, the attack can be always maintained. The complexity ofthe attack depends on the size of internal state of compression function since HNF-256 does not use large internalstates but they are complex enough and it require at least brute force search to find collision.
4.3. Herding attack
In the Herding attack, the attacker presents the hash value of a message without knowing the beginning of the message.The main idea of the attack is building a diamond structure: a binary tree of collisions. Similarly to the previousmulticollision attack, in order to build the diamond structure, internal collisions have to be built. For HAIFA baseddesign it is difficult to generate internal collision using a diamond structure with fixed initial values, random messageand a random counter values. Therefore HNF-256 is resistant to the herding attack.
4.4. Fixed point attack
It is stated by Dean that for an iterative hash function, if the fix points of compression function can be calculated easilythen finding second preimage is easier than expected. In a hash function, fixed points occur when the intermediate hashvalue does not change after digesting a given message block.The complexity of the attack is determined by the complexity of finding expandable messages. Starting from an arbitraryinitialization vector, expandable messages are groups of messages of varying lengths whose hash values collide justprior to entering the finalization function i.e. just before the digest length and message length are appended. These aremessages of varying sizes such that all these messages collide internally for a given initial values. These expandablemessages can be quite long, and can be used to generate second preimages for a lot less than 2256 work. Fixed pointattacks in this form cannot be applied to the HNF-256 because we include the counter values in each iteration ofcompression function which does not allow to find expandable messages and avoids the existence of trivial fixed pointfor the design.
4.5. Collision attack
Collision finding attacks on single branch of HNF-256 can be considered in two individual scenarios. The first one isa chosen IV collision attack and the second one is an ordinary collision attack. Chosen IV collision finding attack is anattack which is worth considering on each single branch of HNF-256. In this attack, finding compatible IVs togetherwith appropriate massage differences can be led to collision. Here, this type of attack is not applicable on one branch ofHNF-256. Gaining collision in one branch is possible by finding a nonzero XOR difference for some message words andpreserving the other message word differences zero. This attack has a complexity not less than what it is in birthdayattack.Ordinary collision attack on single branch of HNF-256 can be successful if someone can insert a differential characteristicthrough one branch leading to zero differences in the last step. To this aim, the attacker should follow one of the followingtwo strategies: first the attacker inserts one or more non zero difference message words in the first step and expectsto meet zero difference words at the end of the last step of one branch. Second, the attacker constructs two individualcharacteristics for two semi-branches, using meet in the middle technique. In this scenario, the attacker wishes thatconstructed characteristics for the first four steps and the last four steps in opposite direction meet each others at theend of fourth step.

75

Building a 256-bit hash function on a stronger MD variant

Let us consider the strategies. Suppose that the attacker inserts one or more nonzero difference message words as inputto the first step. Looking at the structure of each step reveals that the two message words along with a counter value areinvolved in each step. This causes the attackers decision for altering messages gaining to collision too complex. Thismakes the career of the attacker too hard due to arisen complexity in simultaneous equations. This complexity is notless than what it is in birthday attack (2128) due to existence of some good properties of functions f and g. The secondscenario is more complex than the first. In this strategy, he should find two individual and depended characteristicswhich collide with another in the middle of the branch. So, forced conditions resulted in more simultaneous equationsthan the first strategy will grow. Moreover, if an attacker inserts the message difference to find a collision in 3-branchthen, he expects the following:
(41 �42)⊕ (42 �43) = 0, (3)

where, 4i is the output difference of the BRANCH1. To obtain such a differential pattern the attacker should surveythe following strategies:Strategy-1: To construct a differential characteristic with a high probability for a branch function, say BRANCH1 andthen expects that, the operation of the output differences in the other branches 43 is equal to 41.Considering the structure of a branch of HNF-256, it can be easily seen that using functions with good properties, highdiffusion structure, and different permutation of input message words for each branch causes the outputs of a branch tobe randomized. So it can be expected that finding a collision costs at least 2256.Strategy-2: To construct two different differential characteristics such that:
(41 �42) = −(42 �43). (4)

This can be generated for cancelling the first and second chaining values to obtain the difference between the chainingvalues as zero, the required condition for generating an attack.To find an attack using this strategy an attacker has to construct such a differential pattern of the message words. But,for any message words it is computationally hard to find such sequences.Strategy-3: To insert the message difference which yields same message difference pattern in all the three branchesand expect that, same differential characteristics occur simultaneously in three branches.This strategy is relatively easy for an attacker. However, using the message word reordering this can be avoided justas in the case of FORK and NewFORK-256. Since the same message word reordering is used in the proposed hashfunctions same security level can be expected for it against this strategy. Moreover, using different operators highlycomplicates the computation of good differential paths. Addition of message words, parallel mixing structure, rotation ofregisters and addition of dither value made compression function stronger against different against different attacks.
5. Performance analysis
5.1. Output hash values
For the sake of simplicity, let us consider message, M (1 block, 512 bit), given by:00112233 44556677 88990011 2233445566778899 00112233 44556677 8899001122334455 66778899 00112233 4455667788990011 22334455 66778899 00112233Intermediate and final hash values for HNF-256 are given in Table 7.
5.2. Randomness
We have taken an input message M of 512-bit length and computed corresponding hash value. By changing the ithbit of M , new modified messages have been generated, for 1 ≤ i ≤ 512. Then we generated hash values of all thesenew messages using HNF-256 and finally computed Hamming distances between hash values of original message andmodified messages. Ideally it should be 128. But we found that these Hamming distances were lying between 108 and

76

Harshvardhan Tiwari, Krishna Asawa

Table 6. Comparison of proposed design with existing designs.

Property FORK-256 NewFORK-256 HNF-256Input parameters 2 2 4Output parameter 1 1 1Construction Merkle-Damgård Merkle-Damgård HAIFAMessage block size 512-bit 512-bit 512-bitWord size 32-bit 32-bit 32-bitTotal input bits to the compression function 768-bit 768-bit 832-bitOutput hash value 256-bit 256-bit 256-bitNumber of branches 4 4 3Message blocks in step 2 2 2Constants 16 16 16Number of steps 8 8 8Shift values fixed fixed fixed32-bit functions 2 2 2Bijective function not present present presentUsed operations ⊕, <<<<,� ⊕, <<<<,� ⊕, <<<<,�Efforts required to find preimage 2256 operations 2256 operations 2256 operationsEfforts required to find 2nd-preimage 2256 operations 2256 operations 2256 operationsEfforts required to find collision < 2128 operations < 2128 operations 2128 operationsDifferential cryptanalysis complex complex complexGeneric attacks possible possible not possible

Table 7. Intermediate and final hash values for HNF-256.

OutputBranch1 95806BB6 88FE91FC A3F50D38 E8391DA0 E7C8232C C687D600 B0D66C14 ABB360FBBranch2 34513435 9650852E A68379DC 58AB8E54 C56675D9 1858FAFE 7B53891F 67153F87Branch3 22742C65 716E8445 EF61CB0A B022D92B 28D24D9A 4820BF47 61B930CA 41F074C1Final 91EE5D8 D457CCDE 1C0CB764 ED7AC1C5 9424ACF5 599ED347 10A92685 17ADE1E3

157. Range of distances is given in Table 8. Distribution of distance for HNF-256 and NewFORK-256 is shown inFigure 3. Based on the comparison in Table 8, proposed algorithm has obtained gain over number of hash pairs in thespecified range of distances. The analysis shows that HNF-256 generates highly random output and possesses perfectsensitivity property.
Table 8. Range of distances.

HNF-256 NewFORK-256Distances Hash pairs Percentage(%) Hash pairs Percentage(%)128±5 262 51.17 231 45.11128±10 418 81.64 383 74.81128±15 492 96.09 476 92.96

77

Building a 256-bit hash function on a stronger MD variant

Figure 3. Frequency distribution of distance for HNF-256 (left). Frequency distribution of distance for NewFORK-256 (right).

Table 9. Bit variance analysis.

Hash function Number of Digests Mean frequency of 1s (Expected) Mean frequency of 1s (Calculated)HNF-256 513 256.50 256.79NewFORK-256 513 256.50 251.12

5.3. Bit variance test
The bit variance test consists of measuring the impact on the digest bits by changing input message bits. Bits of aninput message are changed and the corresponding message digests (for each changed input) are calculated. Finallyfrom all the digests produced, the probability Pi for each digest bit to take on the value of 1 and 0 is measured. If
Pi(1) = Pi(0) = 1/2 for all digest bits i, 1 ≤ i ≤ n , where n is the digest length, then the hash function underconsideration has attained maximum performance in terms of the bit variance test. Therefore, the bit variance testactually measures the uniformity of each bit of the digest. Since it is computationally difficult to consider all inputmessage bit changes, we have evaluated the results for only up to 513 files and results are shown in Table 9.The above analysis shows that HNF-256 exhibits a reasonably good avalanche effect. Thus it can be used for crypto-graphic applications.
5.4. Statistical analysis of diffusion
Diffusion is an important criterion in design of hash function. Diffusion means spreading out of the influence of a singleplaintext bit so as to hide the statistical structure of the plaintext. It is a general principle to guide the design of hashfunction. For the hash value in binary format, each bit is only 1 or 0. So the ideal diffusion effect should be that anytiny changes in input lead to the 50% changing probability of each output bit. We have performed the following diffusiontest. A message is randomly chosen and hash value is generated, then a bit in the message is randomly selected andtoggled and a new hash value is generated. Two hash values are compared with each other and the number of changedbit is counted as Bi. This kind of test is performed N (such as 64, 128, 256, 512) times. We used four statistics forthis: mean changed bit number B, mean changed probability P , standard deviation of 4B the changed bit number andstandard deviation 4P [37].Mean changed bit number:

B = 1
N

N∑
i=1 Bi. (5)

78

Harshvardhan Tiwari, Krishna Asawa

Table 10. Statistics of number of changed bits.

HNF-256 NewFORK-256
N B P% M B M P B P% M B M P64 129.71 50.67 8.69 3.39 127.43 49.78 9.63 3.76128 128.85 50.33 8.85 3.45 127.91 49.96 8.97 3.51256 128.78 50.30 9.13 3.56 128.14 50.05 8.53 3.33512 128.23 50.09 8.46 3.30 127.72 49.89 9.07 3.54Mean 128.89 50.35 8.78 3.43 127.81 49.92 9.05 3.53

Figure 4. Distribution of changed bit number for HNF-256 (left). Distribution of changed bit percent for HNF-256 (right).

Mean changed probability:
P = (B/256)× 100%. (6)

Standard deviation of the changed bit number:
4B =

√√√√ 1
N − 1 N∑

i=1
(
Bi − B

)2. (7)
Standard deviation:

4P =
√√√√ 1
N − 1 N∑

i=1 (Bi/256− P)2 × 100%, (8)
where, N is total statistic number. 4B and 4P indicate the stability of diffusion. Through the tests with N = 64; 128;256; 512, respectively, the corresponding data are listed in Table 10. Distribution of changed bit number and percentfor HNF-256 and NewFORK-256 is shown in Figure 4 and 5 respectively, where N = 512.
5.5. Analysis of collision resistance
Collision attack is a typical algorithm-independent attack which can apply to any hash function. Collision resistancemeans that the hash results are identical to different random initial input. Efforts required for finding a pair of messagesthat results to a same hash value for an n-bit hash function is 2n/2. Since the length of the hash value is 256-bits,requires 2128 operations to find a collision. Moreover, in order to investigate the collision resistance capability of thehashing approach, we have performed two collision tests.

79

Building a 256-bit hash function on a stronger MD variant

Figure 5. Distribution of changed bit number for NewFORK-256 (left). Distribution of changed bit percent for NewFORK-256 (right).

Table 11. Statistics of absolute difference.

AD Maximum Minimum Mean Mean/characterHNF-256 3411 1795 2748 85.87NewFORK-256 3178 1686 2658 83.07

In the first experiment, the hash value for a randomly chosen message is generated and stored in ASCII format. Thena bit in the message is selected randomly and toggled and thus a new hash value is then generated and stored in thesame format. Two hash values are compared with each other and the number of character in this format with the samevalue at the same location in hash value is counted. The absolute difference of the two hash result is calculated byusing the following formula:
AD = N∑

i=1 |dec(ei)− dec(e′i)| , (9)
where ei and e′i are the ith ASCII character of the original and the new hash value, respectively, dec() converts theentries to their equivalent decimal values. This kind of collision test is performed 2048 times. The maximum, minimum,mean values of AD are listed in Table 11.Simulation result indicates that the sensitivity property of hash value for HNF-256 is perfect that the absolute differ-ence/character in the final hash value corresponding to any least difference of message will always wave around thetheoretical value 85.33.In the second experiment, the hash value for a randomly chosen message is generated and stored in ASCII formatsimilarly. This experiment concentrates on the possibility of colliding between every two hash results, thus every twohash results should be compared. The simulation is performed 2048 times. The plot of the distribution of the number ofASCII characters with the same value at same location is given in Figure 6. The maximum number of equal entries forHNF-256 is 2 while for NewFORK-256 is 3. So from the Figure 6(a) the hash results could resist collision well. Ourproposed algorithm HNF-256 shows a lower value in the maximum number of equal characters at the same location intwo hash values than NewFORK-256. It shows that the proposed hash algorithm possesses a strong collision resistancecapability.
5.6. Robustness against differential cryptanalysis
We studied the robustness of the proposed hash function against differential cryptanalysis. This attack analyzes theplaintext pairs along with their corresponding hashes pairs. For example, if the difference between 2 messages be 2 bits,

80

Harshvardhan Tiwari, Krishna Asawa

Figure 6. Distribution of the number of ASCII characters with the same value at the same location in the hash value for HNF-256 (left). Distribution
of the number of ASCII characters with the same value at the same location in the hash value for NewFORK- 256 (right).

Table 12. Results for differential cryptanalysis.

d 1 2 4 8 16 32HNF-256(σ) 7.73 7.92 8.47 8.13 8.57 8.51NewFORK-256(σ) 7.82 7.86 8.92 9.26 8.11 9.89

(i.e., say, d=2) then the message digest pair difference d′ for the corresponding 2 message digests can be calculated.From the distribution of corresponding to different message pairs, the standard deviation (σ) is calculated. If σ < 10%,then the hash function is secure against differential cryptanalysis. For the experiment input message of 10 bytes wasconsidered. The experiments were run for all possible d = {1, 2, 4, 8, 16, 32} bit differences for an input message.The results in Table 12 show that the proposed hash function has better resistance than NewFORK-256 against thedifferential attack.
5.7. Efficiency
The performance test has been carried out over an Intel Pentium 4 CPU at 1.47 GHz with 1GB RAM according to thefollowing procedure: We select a message of size s bytes and generate 1000 random messages of same size. The hashfunction is applied to each of these 1000 messages, measuring the time required to compute each of them. Finally, wetake the average over 1000 samples. In order to compare with FORK-256 and NewFORK-256, the process has beenrepeated for these algorithms. The average CPU computation times (in sec) obtained for FORK-256, NewFORK-256and HNF-256 are listed in Table 13.These experimental results establish the higher speed of execution of HNF-256than FORK-256 and NewFORK-256.
Table 13. Computation times.

S(bytes) 64 128 104 105
FORK-256(sec) 0.0084 0.0657 0.3614 1.1187NewFORK-256(sec) 0.0063 0.0577 0.3606 0.9656HNF-256(sec) 0.0043 0.0409 0.2741 0.7145

81

Building a 256-bit hash function on a stronger MD variant

6. Source code
Here, we provide a source code for the compression function of the HNF-256.
using namespace std;
unsigned int delta[16] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174
};
unsigned int X[]={0x00000000,0x00000200};
#define ROL(x, n) (((x) << n) | ((x) >> (32-n)))
#define f(x) (x ^ ROL(x,15) ^ ROL(x,27))
#define g(x) (x ^ (ROL(x,7) + ROL(x,25)))
#define step(A,B,C,D,E,F,G,H, M1,M2,D1,D2,counter) \
temp1 = A + M1; \
temp2 = E + M2; \
A = (temp1 + D1) ^ counter ; \
E = (temp2 + D2) ^ counter ; \
temp1 = f(temp1); \
temp2 = g(temp2); \
temp3 = g(A); \
temp4 = f(E); \
B += temp1 ^ counter ; \
F += temp2 ^ counter; \
C = (C + ROL(temp1, 13)) ^ (temp3) ^ counter ; \
G = (G + ROL(temp2, 3)) ^ (temp4)^ counter ; \
D ^= ROL(temp3, 17) ^ counter ; \
H ^= ROL(temp4, 8) ^ counter ; \
static void HNF256_Compression_Function(unsigned int *CV, unsigned int *M) {
unsigned long R1[8],R2[8],R3[8];
unsigned long temp1, temp2, temp3, temp4;
R1[0] = R2[0] = R3[0] = CV[0];
R1[1] = R2[1] = R3[1] = CV[1];
R1[2] = R2[2] = R3[2] = CV[2];
R1[3] = R2[3] = R3[3] = CV[3];
R1[4] = R2[4] = R3[4] = CV[4];
R1[5] = R2[5] = R3[5] = CV[5];
R1[6] = R2[6] = R3[6] = CV[6];
R1[7] = R2[7] = R3[7] = CV[7];
// BRANCH1(CV,M)
step(R1[0],R1[1],R1[2],R1[3],R1[4],R1[5],R1[6],R1[7],M[0],M[1],delta[0],delta[1],X[0]);
step(R1[7],R1[0],R1[1],R1[2],R1[3],R1[4],R1[5],R1[6],M[2],M[3],delta[2],delta[3],X[1]);
step(R1[6],R1[7],R1[0],R1[1],R1[2],R1[3],R1[4],R1[5],M[4],M[5],delta[4],delta[5],X[0]);
step(R1[5],R1[6],R1[7],R1[0],R1[1],R1[2],R1[3],R1[4],M[6],M[7],delta[6],delta[7],X[1]);
step(R1[4],R1[5],R1[6],R1[7],R1[0],R1[1],R1[2],R1[3],M[8],M[9],delta[8],delta[9],X[0]);
step(R1[3],R1[4],R1[5],R1[6],R1[7],R1[0],R1[1],R1[2],M[10],M[11],delta[10],delta[11],X[1]);
step(R1[2],R1[3],R1[4],R1[5],R1[6],R1[7],R1[0],R1[1],M[12],M[13],delta[12],delta[13],X[0]);
step(R1[1],R1[2],R1[3],R1[4],R1[5],R1[6],R1[7],R1[0],M[14],M[15],delta[14],delta[15],X[1]);
// BRANCH2(CV,M)
step(R2[0],R2[1],R2[2],R2[3],R2[4],R2[5],R2[6],R2[7],M[14],M[15],delta[15],delta[14],X[0]);
step(R2[7],R2[0],R2[1],R2[2],R2[3],R2[4],R2[5],R2[6],M[11],M[9],delta[13],delta[12],X[1]);

82

Harshvardhan Tiwari, Krishna Asawa

step(R2[6],R2[7],R2[0],R2[1],R2[2],R2[3],R2[4],R2[5],M[8],M[10],delta[11],delta[10],X[0]);
step(R2[5],R2[6],R2[7],R2[0],R2[1],R2[2],R2[3],R2[4],M[3],M[4],delta[9],delta[8],X[1]);
step(R2[4],R2[5],R2[6],R2[7],R2[0],R2[1],R2[2],R2[3],M[2],M[13],delta[7],delta[6],X[0]);
step(R2[3],R2[4],R2[5],R2[6],R2[7],R2[0],R2[1],R2[2],M[0],M[5],delta[5],delta[4],X[1]);
step(R2[2],R2[3],R2[4],R2[5],R2[6],R2[7],R2[0],R2[1],M[6],M[7],delta[3],delta[2],X[0]);
step(R2[1],R2[2],R2[3],R2[4],R2[5],R2[6],R2[7],R2[0],M[12],M[1],delta[1],delta[0],X[1]);
// BRANCH3(CV,M)
step(R3[0],R3[1],R3[2],R3[3],R3[4],R3[5],R3[6],R3[7],M[7],M[6],delta[1],delta[0],X[0]);
step(R3[7],R3[0],R3[1],R3[2],R3[3],R3[4],R3[5],R3[6],M[10],M[14],delta[3],delta[2],X[1]);
step(R3[6],R3[7],R3[0],R3[1],R3[2],R3[3],R3[4],R3[5],M[13],M[2],delta[5],delta[4],X[0]);
step(R3[5],R3[6],R3[7],R3[0],R3[1],R3[2],R3[3],R3[4],M[9],M[12],delta[7],delta[6],X[1]);
step(R3[4],R3[5],R3[6],R3[7],R3[0],R3[1],R3[2],R3[3],M[11],M[4],delta[9],delta[8],X[0]);
step(R3[3],R3[4],R3[5],R3[6],R3[7],R3[0],R3[1],R3[2],M[15],M[8],delta[11],delta[10],X[1]);
step(R3[2],R3[3],R3[4],R3[5],R3[6],R3[7],R3[0],R3[1],M[5],M[0],delta[13],delta[12],X[0]);
step(R3[1],R3[2],R3[3],R3[4],R3[5],R3[6],R3[7],R3[0],M[1],M[3],delta[15],delta[14],X[1]);
// output
CV[0] = CV[0] + ((R1[0] + R2[0]) ^ (R2[0] + R3[0]));
CV[1] = CV[1] + ((R1[1] + R2[1]) ^ (R2[1] + R3[1]));
CV[2] = CV[2] + ((R1[2] + R2[2]) ^ (R2[2] + R3[2]));
CV[3] = CV[3] + ((R1[3] + R2[3]) ^ (R2[3] + R3[3]));
CV[4] = CV[4] + ((R1[4] + R2[4]) ^ (R2[4] + R3[4]));
CV[5] = CV[5] + ((R1[5] + R2[5]) ^ (R2[5] + R3[5]));
CV[6] = CV[6] + ((R1[6] + R2[6]) ^ (R2[6] + R3[6]));
CV[7] = CV[7] + ((R1[7] + R2[7]) ^ (R2[7] + R3[7]));
}
int main()
{

int unsigned CV0[8];
CV0[0] = 0x6a09e667; CV0[1] = 0xbb67ae85;
CV0[2] = 0x3c6ef372; CV0[3] = 0xa54ff53a;
CV0[4] = 0x510e527f; CV0[5] = 0x9b05688c;
CV0[6] = 0x1f83d9ab; CV0[7] = 0x5be0cd19;

unsigned int M[]={0x112233,0x44556677,0x88990011,0x22334455,0x66778899,0x112233,0x44556677,
0x88990011,0x22334455,0x66778899, 0x112233, 0x44556677 ,0x88990011,0x22334455 , 0x66778899,
0x112233};
HNF256_Compression_Function(CV0,M);
return 0;
}

7. Conclusions
In this paper NewFORK-256 design based hash functions is proposed. It processes a message of arbitrary length by512-bit blocks and produce as output a 256-bit hash value or message digest. It is built on HAIFA iterative structure.Compression function of HNF-256 takes three input parameters: 512-bit message block, 256-bit chaining variable and64-bit counter and produce a single output of 256-bit length. Its iterative structures preserves all the three securityproperties: collision resistance, pre-image and second pre-image and achieve the high level security against majorgeneric attacks. We have analyzed the proposed hash function for randomness and security. The bit variance test hasbeen performed for one bit changes. Bit variance test results show that HNF-256 has a good avalanche effect, i.e.when a single input bit is complemented, each of the output bits changed with a probability of 0.5. Thus proposedhash function pass the bit variance test. The statistical analysis of HNF-256 indicates that it has strong and stableconfusion and diffusion capability. The calculated mean changed bit number and mean changed probability for both

83

Building a 256-bit hash function on a stronger MD variant

hash functions are close to the idle value 128-bit and 50% while standard deviation of the changed bit number andstandard deviation are very little, which indicates the capability for confusion and diffusion is very stable. It possesseshigh message sensitivity and good statistical properties.
References

[1] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptography (CRC Press, 1997)[2] B. Schneier, Applied Cryptography (John Wiley & Sons, 1996)[3] H. S. Kwok, W. K. S. Tang, A Chaos Based Cryptographic Hash Function for Message Authentication, Int. J. Bifur.Chaos 15, 4043–4050, 2005[4] Y. Li, S. Deng, D. Xiao, A Novel Hash Algorithm Construction Based on Chaotic Neural Network, Neural Comput.Appl. 20, 133–141, 2011[5] Y. Li, D. Xiao, S. Deng, G. Zhou, Improvement and Performance Analysis of a Novel Hash Function Based on ChaoticNeural Network, Neural Comp. Appl. 22, 391–402, 2013[6] M. Mihaljevie, Y. Zheng, H. Imai, A Cellular Automaton Based Fast One-Way Hash Function Suitable for HardwareImplementation, PKC ’98, LNCS 1431, 217–233, 1998[7] R. Rivest, The MD4 Message Digest Algorithm, CRYPTO’90, LNCS 537, 303–311, 1991[8] I. Damgård, A Design Principle for Hash Functions, Crypto’89, LNCS 435, 416–427, 1990[9] R. Merkle, One Way Hash Functions and DES, CRYPTO’89, LNCS 435, 428–446, 1990[10] R. D. Dean, Formal Aspects of Mobile Code Security, PhD Thesis (Princeton University, Princeton, 1999)[11] A. Joux, Multicollisions in Iterated Hash Functions, CRYPTO’04, LNCS 3152, 306–316, 2004[12] J. Kelsey, B. Schneier, Second Preimages on n-bit Hash Functions for Much Less than 2n Work, EUROCRYPT’05,LNCS 3494, 474–490, 2005[13] J. Kelsey, T. Kohno, Herding Hash Functions and the Nostradamus Attack, EUROCRYPT’06, LNCS 4004, 183–200,2006[14] E. Biham, O. Dunkelman, A Framework for Iterative Hash Functions-HAIFA, Cryptology ePrint Archive, Re-port2007/278, 2006[15] R. Rivest, Abelian Square-free Dithering for Iterated Hash Functions, ECRYPT Hash Function Workshop, Cracow,June 21, 2005[16] S. Hirose, J. H. Park, A. Yun, A Simple Variant of the Merkle- Damgård Scheme with a Permutation, Asiacrypt’084833, 113–129, 2008[17] B. den Boer, A. Bosselaers, An Attack on the Last Two Rounds of MD4, Crypto’91, LNCS 576, 194–203, 1992[18] H. Dobbertin, Cryptanalysis of MD4, FSE’96, LNCS 1039, 53–69, 1996[19] R. Rivest, The MD5 Message Digest Algorithm, Request for Comments (RFC) 1321, Internet Engineering TaskForce, 1992[20] B. den Boer, A. Bosselaers, Collisions for the Compression Function of MD5, Eurocrypt’93, LNCS 765, 293–304,1994[21] H. Dobbertin, Cryptanalysis of MD5, Rump Session, EUROCRYPT’96, 1996[22] X. Wang, F. X. Feng, X. Lai, H. Yu, Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD, RumpSession, CRYPTO’04, Santa Barbara, California, USA, August 17, 2004[23] F. Chabaud, A. Joux, Differential Collisions in SHA-0, Crypto’98, LNCS 1462, 56–71, 1998[24] E. Biham, R. Chen, Near-collisions of SHA-0, Crypto’04, LNCS 3152, 290–305, 2004[25] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, W. Jalby, Collision of SHA-0 and Reduced SHA-1, Eurocrypt’05,LNCS 3494, 36–57, 2005[26] X. Wang, Yu, Y. L. Yin, Efficient Collision Search Attacks on SHA-0, CRYPTO’05, LNCS 3621, 1–16, 2005[27] V. Rijmen, E. Oswald, Update on SHA-1, RSA’05, LNCS 3376, 58–71, 2005[28] X. Wang, Y. L. Yin, H. Yu, Finding Collisions in the Full SHA-1, CRYPTO’05, LNCS 3621, 17–36, 2005[29] H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160- A Strengthened Version of RIPEMD, FSE’96, LNCS 1039,71–82, 1996[30] D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, S. Chee, A New Dedicated 256-bit Hash Function:
84

Harshvardhan Tiwari, Krishna Asawa

FORK-256, FSE’06, LNCS 4047, 195–209, 2006[31] D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon, S. Chee, NewFORK-256, Cryptology ePrint Archive,Report 2007/185, 2007[32] K. Matusiewicz, S. Contini, J. Pieprzyk, Weaknesses of the FORK-256 Compression Function, Cryptology ePrintArchive, Report 2006/317, 2006[33] F. Mendel, J. Lano, B. Preneel, Cryptanalysis of Reduced Variants of the FORK-256 Hash Function, RSA’07, LNCS4377, 85–100, 2006[34] M. Danda, Design and Analysis of Hash Functions, Master Thesis (Victoria University, 2007)[35] M. O. Saarinen, A Meet-In-the-Middle Collision Attack Against the New FORK-256, INDOCRYPT’07, LNCS 4859,10–17, 2007[36] B. Preneel, The NIST SHA-3 Competition: A Perspective on the Final Year, AFRICACRYPT’11, LNCS 6737,383–386, 2011[37] K. W. Wong, A Combined Chaotic Cryptographic and Hashing Scheme, Phys. Lett. A 307, 292–298, 2003

85

	Introduction
	Related work
	Description of proposed hash function HNF-256
	Security analysis
	Performance analysis
	Source code
	Conclusions
	References

