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GENERALIZED CONVERGENCE ANALYSIS
OF PERTURBED JACOBI ITERATIONS

1. Introduction

In [1] a functional iterative scheme to solve numeriocally
nonlinear systems of equations has been developed by perturbing
nonlinear Jacobi lterations., The same concept was broadened and
discussed from various aspects, both mathematical and computa-
tional, in [4], [5], [6]. The advantages of such perturbed
iterative schemes over other existing methods, for examplse,
Newton s method, nonlinear Jacobi and Gauss-Seidel methods we-
re also discussed in these articles [1], [4], [5], [6] with
appropriate examples, These discussions are not repeated hers.
However, an analysis of convergence properties of these me-
thods seem to be dealing with special cases of perturbed func-
tional iterations, In this article, these properties have been
derived from one uniform prineciple and as such theorems on
convergence derived before become simply particular cases of
the convergence theorem derived here, Thus, within the frame-
work of this context, this article is of a theoretical nature.
It may be worth mentioning that theorems on convergence of
functional iterations given in [}] are also particular cases
of the principle developed here, As an example, we considered

here nonlinear Jacobi iterations,

In [2], stability and convergence properties of nonlinear
partial difference equations were analyzed. This analyagis
deals with a sequence of matrices, having variable elements,
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2 S.K.Dey

which damp out instabilities and errors and thereby cause ocon-
vergence, These matrices, called decaying matrices or D-matri-
ces, have been found to be applicable to the convergence ana-
lysis of nonlinear functional iterative schemes, This study
has been conducted in this article,

2. Mathematical prelimlnaries

Let R® be a real n-dimensional space and x-bq,xzﬂ..,x )
€ QC:Rn Let A be a square matrix (nx n) whose elements
are aij(X) 1+ Q — Q. If there exists a constant L such
that for every xeQ Iaij(x)l <L, 1 =1,250eeyn3 J =
= 142400040, then A 1is a bounded matrix on Q. ZLimits of
matrices with varisble elements have been discussed quite
thoroughly in [71]‘

Let x* = 1,x2,...,x )TEiQ. We oconsider a recurrsive

matrix equation

k-1

(1) xk=Akx (k=1,2,coo)’

where Ak's are coilcunuting, blc;uflxded square matricgs (nxn)
having elements 853 = aij(x “',b), where be€R" remains in-
variant.

If there exist certain conditions such that as k —+oe ,
x¥ — 0 the motion given by (1) is called a motion of deca-
dence of x on Q, A study of these conditions will now be
done.

Let us assume that {Ak} forms a sequence of bounded
square matrices of the same type., Let these matrices have cer-
tain properties such that the sequence: A1-A2, A1-A2-A3,...,
A1-A2 ...HAk,... tend to ¢ as k -—+oc » Then we have the

following:

Definition 1. The sequence {Ak} is called
a decaying sequence of matrices and each matrix Ak is called
a decaying matrix or a D-matrix on Q.
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Generalized cohvergence snalysis 3

Since HAll=0 4iff A = ¢, A, 8 are D-matrices iff

(2)‘ kl_i..r: TAy Ay eoe A= O,
Several properties of D-matrices have been discussed in [2].
A few of them may be mentioned here,

Theorem 1. Equation (1) gives a motion of de-
cayness 1ff for every k and x% Q, Ak is a D-matrix on Q.

k k-1 _ k=2 _ =
X = AkX = AkAk_1x = ese = AkAk-1 seo e

Proof .
oo A1x°.
Since for every k Ak is a D-matrix, the matrices Ak are
bounded and commuting, Thus, 1lim A1 A2 eee Ay = 0 which
proves the theorem. koo

"Theorem 2, A sufficient condition for Ak to be
a D-matrix for every k >X 1s fA, l <x<1 for some g-norm.

Proof . Sinoe' HA1 A2 eee An"q g”A1”q XX
oo Maglly Tag qlly ooo Iaply  and for every k>, [All, <a<
hence 1im liA, Ay eee Aﬂllq = 0, which proves the theorem,
Nn-=o0
3. Perturbed Jacobi iterations for coupled nonlinear sys-~
tems
Let us consider a coupled nonlinear system

(3) xi = Gi(x1 ,ngono,xn)!
where
xt = (x?l'x% cee xi)TeQiCRn,

Gi = (G?I-G% tee Gxi])TGQiCRn’ 1=1,2,¢00yn.
1

il

Phus, each Gl : Q' xQ%x veex QU cR® xRP x ... x R? — @1,

let Q=Q1><sz...xQn and R = R®PxR%x... xR, We
assume that (3) has a solution in Q, given by

i

xtt - (x?;"* x%'* coe xi'*)TélQ .
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4 SeKe.Dey

Therefore, for every i
fa) b et x 22 L. ).

The nonlinear Jacobi iterations may be expressed as

1,k _ qi,k=1
?

(5) X =G

i,k is the value of xi

where x at the kth iteration and,

(6) Gi,k-1 = Gi(x1 ,k-1 x2,k-’1 ces xn'k—1).

A perturbed Jacobi iteration, in the element form, may be
expressed as

(7) Xt =Wyt o+ G

(1 = 1,2,00en3 § = 1,2,4000),

where w%'k are the psrturbation parameters which are yet to

be computed. To do this, we assume that:

(1) these parameters are small with respect to the other
terms in (7) and the sguares of them may be neglected,

(ii) for every xte Qi and all 1i,j we have BG§/8x§ £1,

(111i) for every xte Qi and all 1,3, 32G§/8x%2 is bounded.
Assuming convergence after (k-1) iterations, we have for all
i,

1, 1,k=1 _ ol,k-1,

_ Lk
rTo=xy =X 3

Hence frem (7) we obtain

(8) W;"k + G%’k-1 = G%(x1,k-1x2’k—1.o.xi—1 ’k~1;

i,k=1

1,k=1 i,k=1 i,k ol x

i,k-1 i,k-1
x1’ uo.Xj_1 [} Wj ’ eeeX !

3+1 n i
xi+1,k-1.”xn,k-1)°

- 408 =~



Generalized convergence anzlysis 5

If the right side of (8) is expanded in a Taylor’'s series
and the assumptions (i), (ii) and (iii) are applied, one may
get

R

(i = 1,2,00.11; j = 1,2,...11; k = 1,2,.-0).
where,
(10) a%,k—1 - G§(x1,k-1,...xi-1,k-1; xi,k-1...
- - - i ke i k-
...x?]-'.’_lf 1,G3:’k 1' xti'j":-lf 1,.-.x;'k 1; xl+1' 1,00.
...’xn’k-1)
and
i
- G
Al k-1 _
(11) e = 5
’ -1 1-1,k-1__1,k-=1
(x1ok=1 . xt-10k- 2 SR
i k=1 i,k-1 _i,k-
X3y a6y T,
x;Il.,k-1;xi+1,k-1’.”xn,k-”°

Thus the algorithm of a perturbed Jacobl iteration to sol-
ve coupled nonlinear system numerically consigsts of the fol-
lowing steps:

1. Make an initial guess x
i=1,2,eeen,

Then, at some kth iteration

2. Compute wg’k using (9).

1,0 _ (1:1’0...xn'0)Te<;)i for each

3. Compute x%’k using (7).
The convergence criterion is
(12) max |w§’k|< €,
i,
where € 1is positive and arbitrarily small.
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6 : S.K.Day

In [1] we have recorded that condition (12) may be both
necessary and sufficient for convergence., Here, we will apply
a more general analysis of this property.

4, Analysis of convergence

Iet x = (x1 X% vee x)T, Then xcQ and (3) may be ex-
pressed as x = G(x) where G : Q — Q.

By convergence of iterations it is meant

1im x?j'k = x%" for all 1i,J.

koo

This implies

(13) 1im £ = x*

k-co

Obviously, (7) may be expressed as

(14) <5 = wk 4+ k-l

Since convergence of iterations according to (4) also implies

*

lim Gk'1 =G =x , @ necessary condition for convergence
K—~oo

is that

(15) lim wE) = 0

k-
for some norm., This equation implies (12). We need to prove

now that (15) may also be a sufficient condition tor conver-

gaence,
Let x| = (1xgl1xy1 eue Ix, 1070 Tet x = HIZ*T) be

a recursive relation such that xke Q. PFurthermore, let tor
e Q

(16) 1H(xE) = Hl)| = A 155 - 1,

where Ak is an isotone matrix (and obviously for nonlinear
cases, Ay = Ak(xk, o)),
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Detinition 2, If for every k Ak is a D-ma~

H 1is called a D-mapning vn Q.

irix on G,
I ¢ is a D-mapping on Q eand

"heorem 3,

1im w5 = ¢

k +oo

(17)

and x* 1s

the iterative scheme (14) will converge to x*
the’ trixed point of G in Q, FPurthermore, if (I - Ak)
exists for all xke G, x* 1is thc unigue fixed point of G.

Proof. Because we have
(18) Ixk - x 1<kl + lo(=X"1) - a(x*) <

<|Wkl + Aklxk-1 - x*( < eoe

J 0_,*
_1..0A3+1 lw ' + AkAk-1oocA1‘x -X I<

N\
M~

AkAk

[N
)]
-

J

M

.
u
-

k .
Z : J

Cd

see A1|xo - x“',

and equation (17) implies that for some k2k, + 1, [wk|<<é,

hence from (18) we get
ko
k
*

3=1

k

2 . O =

+ (Ak Ak—1...Aj+1 }£+Ak Ak_1...A1|x =X ‘ .
J=ky1
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8 S.K.Dey

Since {|Ix|ll= xf, we have for any norm
k

0
k_ * <
(20) Ix"=x*lI<lla, Aeoenohe 41 I ll:g1 (Ako Ako_1...Aj+1)|w3Iﬂ+

k
3 DI Y NUPOrT S Y S D S o B PO
J=koy+1
Since Ay is a D-matrix, %im A1A2...Ak =g, giving
- o0

1lim HA1A2...AkH'= 0 and 1lim "Ako+1 Ako+2 ess Al = 0. Hence,

k-—+co k—oo

€ being arbitrarily small, gim [x% - x*|

[

0 which establi-~

shes oconvergence.
To prove uniqueness,; we assume that x
root, Then

y* 1is a seoond

Ix* - 3*1 = la(x*) = a(y")] = a,lx" - 5*I.
Thus,
(I-A*”X“-y*l = ¢.

Since, (I = 4, ) is nonsingular for all k, we have
|x* -3*] =g or, x* =y". For the ordinary nonlinear Ja-
cobi iterations,
xk

k-1)'

(21) = G(x

and we can prove the following theorem,
Theorem 4., The iterations (21) converge to x

iff G 4is a D-mapping on Q.
Proof. Since x*ecQ, we have

xk—‘l - x* =

| = x*| = [6(x*") - alx*)] = & |
0 *
= eee = Ak Ak-1 s e A1 [x - X Io

Thus convergence follows for all lxo - x*| iff Ay is a
D-matrix,
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Generalized convergence analysis 9

We may also prove that

Theorem 5, If G is a D-mapping and for eve-
ry k (I -a)7" exists, then x = x* is the unique fixed
point of G on Q.

The proof follows from Theorems 3 and 4,

These theorems reveal the apparesnt differsnces of conver-
gence properties of perturbed and ordinary Jacobi iterations

for nonllnear equations,

5. Disoussions

Praotical applications of D-matrices may be found in [2].
The basic concept of such a matrix is certainly an extension
of that of a convergent matrix, One main drawback of conver=-
gent matrices is that product of two convergent matrices is
not necessarily a convergent matrix, For example if

0 1 1 -1
A = and B =
0 O 1 -1

then p(A) = p(B) = 0, where p(A) 1is a spectral radius

of 4, but
1 -1 )
AB = , p(AB) = 1,
0 O

Thus, although A and B are. convergent matrices, AB is
not & convergent matrix. If for every k, ﬂAkH <1 for some
norm, Ak is a convergent matrix but may not be a D~matrix,
But if for every k, ﬂAk"<<x<1, A 1is both e convergent
matrix as well as a D-matrix. Howsever, if {Ak} form a se~
guence of D-matrices their product ~— ¢, whereas if {Ak}
form a sequence of convergent matrices, their product may not
tend to be a null matrix. There are many other very subtle
differences between these two groups of matrices some of which
have been discussed in [2]. We may still note that
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1o . S.K.Dey

Theorem 6, If for every Kk, A = A, then A
is a D-matrix iff A 1is a convergent matrix, The proof is
rather simple [2].

By introducing the concept of D-matrices, convergence
theorems in [ﬁ], [3] for nonlinear pbrturbed and ordinary Ja-
cobi iterations become particular cases of Theorems 3, 4 and 5,
These theorems may be extended for a generalized convergence
analysis of perturbed Gauss-Seidel iteration [5]. The primary
advantdges of these perturbed functional iterations are:

(1) they have simpler algorithms and

(1i) they have quadratic rates of convergence in the vicinity
of the root.

Also, it has been found ccmputationally that these methods

disnlayed global convergence properties, Detalled discussions

on these and their applications may be found in [1], [4], [6].
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