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ANALYSIS OF BIFURCATION OF PERIODIC SOLUTIONS 

BY POINCARÉ'S METHOD 

1. Introduction 

This paper is concerned with the study of bifurcations of 

periodic solutions of nonlinear nonautonomous differential 

equations depending on a small parameter. He perform this stu-

dy using Poincaré's method [1]; that means that we compute 

formal Taylor expansions of the solution near a periodic solu-

tion of the reduced system. This reduced system, the system 

obtained for a zero value of the parameter, is not asked to be 

linear. 

We study equations of the form 

(1.1) x = X(x,t) + ef(x,t,e) 

where 

x : IR —» IRn, 

X : IRnx IR —» IRn, 

f : IRnx IR x IR —» IRn. 

The maps X and f are assumed to be analytic in x, 

eventually in a definition domain smaller than the whole 

space, and periodic in t of period T. The map f has to be 

analytic in e near e = 0. If we assume that the system is 

nonautonomous, and thus the period fixed, the maps X and f can 

not be both independent of t. 

The system (1.1) with e = 0 is called the reduced system: 

(1.2) x = X(x,t). 

We assume that this reduced system has a k-dimensional family 

of T-periodic solutions (1 s k s n) 

(1.3) x<°> = $(t,h) , h e G c IRk 
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which depends differeritiably on the parameter h. This parame-
ter corresponds to the initial conditions. We assume that 

rk 1! = k r K ah * 
so that the set 

$ = {x e Rn|3t e IR, 3h e G, x = $(t,h)} 
is a k-dimensional immersed submanifold of IRn. We are looking 
for T-periodic solutions of (1.1) (depending on e) such that 
they are equal to (1.3) for e = 0. 

Let h be fixed. The variation equation corresponding to 
this solution is 

(1.4) ^ = 

where |Q denotes that the values are taken at x ^ . This is a 
linear n-dimensional equation with periodic coefficients. We 
assume that we know its principal fundamental matrix Y(t) so 
that the solutions are 

y(t) = Y(t)-a 
where y(0) = a . 

As there is no general method to find the solutions of 
such an equation, the requirements of knowing the matrix Y(t) 
reduces seriously the interest of our method. Nevertheless, it 
is sometimes possible, as we shall see below, to obtain 
interesting results without knowing Y(t). 

We can already notice that, if $(t,h) is a solution of 
(1.2), we obtain solutions of (1.4) by taking the derivatives 

d$ 
Hr^'h) i 

as X depends on h^ only via We then have k periodic solu-
tions of the variation equation (1.4). This implies that 
rk(Y(T) - E) * n - k. This means that Y(T) - E has at least k 
eigenvalues which are equal to zero. In order to avoid bifur-
cations outside the family $(t,h), we assume that 
(1.5) rk(Y (T) - E) = n - k. 

It follows that there exists a (n - k)•(n - k)-submatrix 
of Y(T) - E of maximal rank. We can assume that this submatrix 
is in the right-hand down corner (eventually after a linear 
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transformation of the coordinates). This means that the sub-

space |o x IRn~k is transverse to the tangent space of the 
IR 

manifold 

2. Calculation of the power expansions 

As we know that 0 x IR ~ is the transverse to M* "n" 
T$(0 h)*' w e c a n l o o , c initial conditions of the perturbed 

equation (1.1) under the form 

(2.1) x (0) = $ (0,h + |3) + i(e,h + /3) 
v 

where |3 e IR and * = (0, .. . ... ) is an unknown map. 

We expand i in powers of e to obtain 

(2.2) <6 = B ( 1 ) e + B ( 2 ) e 2 + . . . 

where B ^ = t(0, . . . .. .,B^1^) depends uniquely on 

h + 0. 

Finally, we expand x in powers of e and (3 to obtain 

00 

x(t,h + /3,e) = J ~ C ( s ) (t,h + /3)es = 

s=0 

= f ( c ( S ' + ^ ) I P + J ^ l £ 2 + . . .) c s 

^ 3 0 >P=o 2 a/32 l/5=o 

where we write c' s ) for C ( s )(t,h). As C ( s ) (t,h + /3) depends 

only on h + /3 and not on h and |3 separately, we can replace 

a kc< s>| . a kc< s>| 
— k ~ b y — i r 

9(3 1/3=0 ah* 'h=hQ 

where h Q is fixed value of h. Then, 

(2.3) x(t,h+|3,e)=y~'(c(s)+ 0+1 l ! ^ 02+...) 

s=0 

so that we nt^a uniquely to obtain equations for the 
is) 

C v (t,h), but not for all the derivatives. 

We put (2.3) into the equation (1.1) and identify the 

terms of equal order in e. The zeroth order relation gives us 
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C ( 0 ) = $(t,h) 
and the higher order relation gives us linear nonhomogeneous 

is) 

equations which are to be verified by C 1 ' 

The initial conditions are 
CiS)<°> " °(i=l k)' Ck+j< 0 ) - Bk+j (J"1 n"k>-

is) is) The nonhomogeneous term Hv ' contains uniquely the Cv ' of order < s so that we can solve these equations iteratively. 
is) The general expression for Hv ' is 

to 5\ H(s)_ 1 d s" 1f| 1 [ d sX 
( ' H "(s-1) 1 — i ^ l sT s (S i) . d s 1 lc=o j3=o dc S 

ax 
ax 

V J 

d sx 
0 desJe=0,/3=0 

and the four first terms are 

(2.6) H ( 1 ) = f(t,$,0), 

. . (2) _ i afxl ^(l)-,2. af| C(1) . afI 

b axJ>o ax^'o ^ axzio 

+ ill c(2) I 1 fl2f I r U ) , 1 a2f\ 
ax| 0

C 2 ax dcI0 2 ac2\0> 

{ 2. 9 ) H<4> - i j ^ l ( c i 1 ) ) 4 ^ ^ ! (c<X>)act2> + 
ax4'o z ax 'o 

a2 v, r, /ox 2 , Q3„| 3 02 

dxz 
[i( C( 2)) . c ^ c ^ l a q i (c^h+ «if| c( 1) c( 2) + 

oL2 J 6 ax3lo ax "o 

'o 2 a x 'o 6 ax2 ac'o ; 6 ax2 ae2lo 
• (i,+ 

6 ac3lo" 
The homogeneous part of (2.4) is nothing else than the 
variation equation (1.4). The solution of (2.4) is 

(2.10) c ( s ) = Y(t)B ( s ) + 
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(s) . (s) where Bv ' is given in (2.2) and rv ' is a particular solution 
of the non-homogeneous equation (2.4) corresponding to zero 
initial conditions 

(2.11) r ( s ) = Y(t) J Y - 1(r)H ( s )(r)dr. 
0 

3. Conditions of periodicity 

We use the periodicity condition 
(3.1) x(T,h + <3,e) = $(0,h + |3) + ¥(e,h + |3) 
which is written using the expansions 

00 
(3.2) $(T,h+/9) + 

S=1 
CO 

= *(0,h+/3) + Y ^ 
s=l 

(T) + 
.(S) 
ah (T)<3 + ± 

,2„(S) 

ah 
(T)fi +. . . ES= 

, ( S ) . + dB (s) 
ah 

i a * B < f V + 

ah' 

We shall consider separately the k first components and 
the n - k last ones to take advantage of the special form of 

<S>. Let 
r(s) _ />(s) - ( B ) . * 

B 

where e Rk, e IRn and similar notations for the 
other variables. The relation (2.10) at z = T becomes, after 

replacing c(s)(T,h) by b(s)(h), 

(3.3) 
B^S)(T,h) 

Y ^ C ^ h ) Y12(T,h) 

Y21<T'h> Y22 ( T' h> B<S)(T,h) 

•(S) 
1 
.(s) 

(T,h) 

(T,h) 

As Y 2 2(T) 
f si B 2 and obtain 

E is invertible, we can solve this equation to 

(3.4) B<S)(h) = ( E - Y (T,h))_1r(S)(T,h). 2 
So we can compute and afterwards (t,h) and x ^ (t,h) , 
and it appears that the last n - k components - the non-
resonant ones - are periodic independly of |3, even if we need 
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to know ß to actually compute x (s) 

The periodic condition for the first k components is 
written 

(3.5) £ 
s=l 

SC „ J s > a c ( s ) 

c| s ) (T,h) + -Jj-(T,h)ß + I _ i - ( T , h ) ß 2 + . e ^ O . 

We know that, for c = 0, p = 0 so that the power expansion of 
(3 begins with a term of first order at least. Then, assuming 
e * 0, the zeroth order relation gives 

(3.6) C<S)(T,h) = 0 . 
This condition gives us the acceptable values of h so that we 
can determine h = h Q and $(t,hQ). It is called the main 
amplitude equation or the bifurcation equation [2]. 

Assuming e * 0, we can divide (3.5) by e and obtain, 
after reordering, 

(s) 
(3.7) y ^ c i S ) (T,h 0)e s _ 1 + 

s=2 

1 
+ 2 

3C 
YlsH-(T'VeS_1 
s=l 

ß + 

00 a2 c ( s ) 

E a ci 
ah2 

s=l 
-(T,h0)e s-1 ß + ... = 0. 

This equation gives us (3 = |3(e) as implicite function and the 
final (formal) solution of (1.1). 

a) First Case. 

3C (1) 
dtm dh (T,hQ) * 0. 

In this case, the implicit function theorem says us that 
there is one and only one solution of (3.7) and that this 
solution is analytic in a neighborhood of 0(e). If 

/3(c) = bĵ e + b 2c 2 + b 3e 3 + (3.8) 

the first four coefficients will be 



Analysis of bifurcation 123 

(3.10) b 2 = " 

-l 

i 
ah 

V. / 

a V 1 * 
1 1 K 2 * 

a c 

ah 

(2) 

1 »,•<={" 

(3.11) b 3 = -
[aci1*] 

-l 
fa 2ci 1) 

l 1 b b i 1 
ah ah 2 1 2 6 

a M x ) 3 a c (2) 

ah b 2 + 

(3.12) 

a 2 c ( 2 ) 

1 1 2 
1 b i + 

a c (3) 

V -

+ 2 - ah 2 

(1 )1 ac; ; 
-i 

l 
ah 

J 

ah b l + c<<> 

a V 1 * 
4. 1 1 h 4 4. 

ac 

l 
2 

(2) 

a 2 c ( 1 ) 

a h f & * 2 b l b 2 ) * I a h 

a V * 1 * 2 

— 5 " b l b 2 + 

ah 

a 2c< 2> , a 3c| 2> . 
b 3 + - J - b i b 2 + I - Z T - b i + 

ah ah-

ac (3) 

ah 

b) Second Case 

a 2 c ( 3 ) 

1 1 2 
b 2 + i — r b i + 
z " ari 

ac (4) 

ah - i - c i 5 1 

ac ( i ) 

rk- 3h (T,h0) = I < k. 

The implicit function theorem does not allow us any more to 

obtain a unique solution of (3.6) and (3.7). Nevertheless, 

assuming rk(acj s^/3(1^,...,h £)) = t, we can use the theorem to 

eliminate the first t variables in (3.6) to obtain a 

completely degenerate equation in the variables (h^+1, . . . ,h^) . 

It is then possible to use Newton's diagram method to obtain 

the solutions of the bifurcations equation as fractional power 

series. As the computations become quite tedious for higher 

order, we shall limit ourselves to consider the 1-dimensional 

case I = k - 1, where the reduced bifurcation equation is a 

one-variable equation. 

We shall now consider a few examples of Newton's diagrams. 

a> B 0 1 * + B 1 0 C = 
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* = '-< B10/ B02> C' B10/ B02 < 

This is a fold-type bifurcation 
tions) [4]. 

C> B 2 0 c 2 / B 0 2 ^ 2 " 

B10' B02 > 

(using Thorn's denomina 

When B 2 0 / B 0 2 > 
W h e n B 2 0 / B 0 2 

0, we obtain no solution. 
< 0, we obtain two straight lines. 

V A 
p = 1 
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d> B 2 0 e 2 + B 1 1 C P + B 0 2 p 2 = 

2 When B ^ - 4 B 2 Q B 0 2 < 0, we obtain no solution. 

2 . . . When B.. - 4B, nB _ > 0, we obtain two straight lines. 

* = C<~ B11 ? y < B h ~ 4 B20 B02>/ 2 B02-

2 
When B ^ - 4 B2q B02 = w e o b t a ^ n o n e straight line, but 

we have to compute the second order to describe completely the 

bifurcation. 

Let us denote the cases c) and d) are not structurally 

stable, while a) and b) are. 

4. Stability of the solutions 

The stability of a solution x(t,h + £ ,e) is studied 

considering the related variation equation 

(4.1) y = ax 
ax Ë1 

ax x(t,h+/3,e) x(t,h+/3,e) 

As usual, we look for a solution y = y(t,h + /3,e) as à power 

expansion 

00 

(4.2) y = y ~ Y ( t , h + / l ' 
1 = 0 

/5) C 1. 

We can use the same technique as before to avoid to evaluate 

the coefficients of the Taylor expansion of Y i(t,h); we then 

obtain 

(4.3) Y ft) = — ax Y0(t), 
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(4.4) 

(4.5) 

y ft) = — xl< ; ax V,(t) + 
0 1 dx* o ( t ) ' 

V * > - g Y,(t) 
o z ax'' 

c ^ Y l ( t ) + m 
5 •*• A L ̂x 

c<2> + 

1 afx 
2 ax3 0(ci

1 }) 2-ii| 0ci
l )]»oCt) 

Generally, 

J ^ t ) + G s 

where G depends uniquely on Y. , k < s and C., j s s. 
S K J 

Taking the initial conditions 

Y 0(0,h + |3) = E; Y i(0,h + p) = 0, i * 1, 

we see that 

(4.6) 

(4.7) 

Y 0(0,h + 0) = Y(t), 

t 2 
Y (0,h + ¡3) = Y(t) J Y - 1(T) ^ 
-1 o ax^ 

c J ^ Y ^ d r , 

and in general 

Y (0,h + |3) = Y(t) S V 1(x)G (T)dr. 
s 0 s 

(4.8) 

So the computation of the characteristic factors - and 

thus of the stability of the solution - can be performed by 

solving the characteristic equation 

dtm|Y(t) + Y xe + Y 2c
2 + ... - XE| = 0 

to obtain X as a power expansion of c. Nevertheless^ the 

amount of computation required tends to become exceedingly 

large, although we do not need to introduce the actual value 

of |3 as a series of power of c before the end of the computa-

tion of X. 

5. Partial solutions of the variation equation 

As we have seen before, the variation equation of the 

reduced system is usually hard to solve, and all our study is 

based upon it. Nevertheless, even if we cannot compute 

effectively the fundamental matrix Y(t), it is sometimes 
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possible to obtain the bifurcation equation. 

The bifurcation equation (3.6) comes from the periodicity 

conditions on the first order term, which is a solution of the 

equation 

(5.1) ¿(1) _ 3X 
ax 

.(1) + f 
0 

However, it can be easily shown [5] that the periodicity 

condition for such an equation is equivalent to the 

orthogonality of the nonhomogeneous term and the periodic 

solution of the adjoint equation, that is 

T 
S (Z(T)|f 
0 

(T)) = 0 (5.2) 

where z(t) is any periodic solution of 

(5.3) z = - ax 
ax 

The resolution of (5.3) is also very difficult in general, 

but we already know the periodic solutions 

3$(t,h)/Sh i, i = 1,.. . ,k 

of the variation equation. If we assume that the T-periodic 

solutions of (5.3) are given by a linear combination with con-

stant coefficients of the T-periodic solutions of the varia-

tion equation, that is 

Z = (3$/3h)A 

where Z = (z f l ) ) €(Rnxk, d$/dh = (3$/ahi) _.€lR
nxk, AelRkxk. We 

ov 
obtain as a condition on ^ that the diagram 

„nxk A* 
-> IR nxk 

ax 
ax 

ax 
ax 

,nxk A* 
-> R nxk 

commutes for every t e [0,T], where A*(a$/3h) = (3$/3h)A. This 

will happen trivially if the variation equation is autoad-

joint, with A = E, but also when the reduced system is Hamil-
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tonian. 

If the reduced system is written, with J = 
3H ' Jx = ax 

the variation equation is 

Jy = £_H 
ax2 

and the adjoint equation is 

z = -
2 

ax2 
Jz. 

Finally, we find that z = Jy. 
In a coordinate frame where y.(0) = e., y 

-E 
0 

n+i(°> = e i 

i = l,...,k, the matrix A will be , that is 

for 

n+1 

"n+k 

rn+l 

rn+k 

It is also possible to find some solutions of the adjoint 
equation if the reduced system has one or more integrals: if 

F(t,x) = const 
is an integral of the reduced system, then 

H - d F H ~ dt 
is an integral of the variation equation. 
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